时间序列预测
0 人感兴趣 · 5 次引用
- 最新
- 推荐

使用 CnosDB 与 TensorFlow 进行时间序列预测
CnosDB是一款基于分布式架构的高性能时序数据库。TensorFlow则是目前在预测领域中非常受欢迎的深度学习框架之一。在这篇文章中,您将学习如何利用时间序列数据进行预测,特别是结合CnosDB和TensorFlow来进行预测。

收藏|多指标时序预测方式及时序特征工程总结
现如今,随着企业业务系统越来越复杂,单指标时间序列预测已不能满足大部分企业需求。在复杂的系统内,如果采用单一的指标进行时间序列预测,由于各个指标相互作用的关系,因此会因为漏掉部分指标因素导致出现预测精确度下降的情况。