Hive 表类型
1 Hive 数据类型
Hive 的基本数据类型有:TINYINT,SAMLLINT,INT,BIGINT,BOOLEAN,FLOAT,DOUBLE,STRING,TIMESTAMP(V0.8.0+)和BINARY(V0.8.0+)
。
Hive 的集合类型有:STRUCT,MAP和ARRAY
。
Hive 主要有四种数据模型(即表):内部表、外部表、分区表和桶表。
表的元数据保存传统的数据库的表中,当前 hive 只支持 Derby 和 MySQL 数据库。
2 Hive 内部表
Hive 中的内部表和传统数据库中的表在概念上是类似的,Hive 的每个表都有自己的存储目录,除了外部表外,所有的表数据都存放在配置在hive-site.xml
文件的${hive.metastore.warehouse.dir}/table_name
目录下。
创建内部表:
3 Hive 外部表
被 external 修饰的为外部表(external table),外部表指向已经存在在 Hadoop HDFS 上的数据,除了在删除外部表时只删除元数据而不会删除表数据外,其他和内部表很像。
创建外部表:
4 Hive 分区表
分区表的每一个分区都对应数据库中相应分区列的一个索引,但是其组织方式和传统的关系型数据库不同。在 Hive 中,分区表的每一个分区都对应表下的一个目录,所有的分区的数据都存储在对应的目录中。
比如说,分区表 partitinTable 有包含 nation(国家)、ds(日期)和 city(城市)3 个分区,其中 nation = china,ds = 20130506,city = Shanghai 则对应 HDFS 上的目录为:
/datawarehouse/partitinTable/nation=china/city=Shanghai/ds=20130506/
。
分区中定义的变量名不能和表中的列相同。
创建分区表:
5 Hive 分桶表
桶表就是对指定列进行哈希(hash)计算,然后会根据 hash 值进行切分数据,将具有不同 hash 值的数据写到每个桶对应的文件中。
将数据按照指定的字段进行分成多个桶中去,说白了就是将数据按照字段进行划分,可以将数据按照字段划分到多个文件当中去。
创建分桶表:
6 Hive 视图
在 Hive 中,视图是逻辑数据结构,可以通过隐藏复杂数据操作(Joins, 子查询, 过滤,数据扁平化)来于简化查询操作。
与关系数据库不同的是,Hive 视图并不存储数据或者实例化。一旦创建 HIve 视图,它的 schema 也会立刻确定下来。对底层表后续的更改(如 增加新列)并不会影响视图的 schema。如果底层表被删除或者改变,之后对视图的查询将会 failed。基于以上 Hive view 的特性,我们在 ETL 和数据仓库中对于经常变化的表应慎重使用视图。
创建视图:
创建视图的时候是不会触发 MapReduce 的 Job,因为只存在元数据的改变。
但是,当对视图进行查询的时候依然会触发一个 MapReduce Job 进程:SHOW CREATE TABLE 或者 DESC FORMATTED TABLE 语句来显示通过 CREATE VIEW 语句创建的视图。以下是对 Hive 视图的 DDL 操作:
更改视图的属性:
重新定义视图:
删除视图:
版权声明: 本文为 InfoQ 作者【五分钟学大数据】的原创文章。
原文链接:【http://xie.infoq.cn/article/e4728707566900dc3748d908d】。文章转载请联系作者。
评论