别小看 Log 日志,它难住了我们组的架构师
大家好,我是小羽。
在最近的开会中,讨论到一些异常的处理,以及日志的输出。是的,这些看起来小的不能再小的事,发生了分歧。因为大家普遍只对 Log4j 了解,而对其余的却基本未曾使用。我们的 Leader 也表示对 ELK 这类大规模日志由于好久不使用,也有点生疏了。所以今天总结了一下关于日志的介绍。
日志对于程序员是不可或缺的,在我们的开发过程中,写完代码需要调试的话,日志是必须的,日志可以帮助我们定位我们的问题,从而更好地帮助我们解决bug
。本期小羽就给大家详细了解一下我们经常使用到的四种日志类型,帮助大家提高开发效率。
好了,开始进入我们的正文。
Slf4j
slf4j 的全称是 Simple Loging Facade For Java,它仅仅是一个为 Java 程序提供日志输出的统一接口,并不是一个具体的日志实现方案,就比如 JDBC 一样,只是一种规则而已。所以单独的 slf4j 是不能工作的,必须搭配其他具体的日志实现方案,比如 apache 的 org.apache.log4j.Logger,jdk 自带的 java.util.logging.Logger 等。
简单语法
SLF4J 不及 Log4J 使用普遍,因为许多开发者熟悉 Log4J 而不知道 SLF4J,或不关注 SLF4J 而坚持使用 Log4J。我么先看下 Log4J 示例:
由于字符串拼接的问题,使用以上语句会先拼接字符串,再根据当前级别是否低于 debug 决定是否输出本条日志,即使不输出日志,字符串拼接操作也会执行,所以许多公司强制使用下面的语句,这样只有当前处于 DEBUG 级别时才会执行字符串拼接:
它避免了字符串拼接问题,但有点太繁琐了是不是?相对地,SLF4J 提供下面这样简单的语法:
它的形式类似第一条示例,而又没有字符串拼接问题,也不像第二条那样繁琐。
日志等级 Level
Slf4j 有四个级别的 log level 可供选择,级别从上到下由低到高,优先级高的将被打印出来。
Debug:简单来说,对程序调试有利的信息都可以 debug 输出
info:对用户有用的信息
warn:可能会导致错误的信息
error:顾名思义,发生错误的地方
使用
因为是强制规约,所以直接使用 LoggerFactory 创建
配置方式
Spring Boot 对 slf4j 支持的很好,内部已经集成了 slf4j,一般我们在使用的时候,会对 slf4j 做一下配置。application.yml 文件是 Spring Boot 中唯一一个需要配置的文件,一开始创建工程的时候是 application.properties 文件,个人比较细化用yml
文件,因为 yml 文件的层次感特别好,看起来更直观,但是 yml 文件对格式要求比较高,比如英文冒号后面必须要有个空格,否则项目估计无法启动,而且也不报错。用 properties 还是 yml 视个人习惯而定,都可以。
我们看一下 application.yml 文件中对日志的配置:
logging.config
是用来指定项目启动的时候,读取哪个配置文件,这里指定的是日志配置文件是classpath:logback.xml
文件,关于日志的相关配置信息,都放在logback.xml
文件中了。logging.level
是用来指定具体的 mapper 中日志的输出级别,上面的配置表示com.bowen.dao
包下的所有 mapper 日志输出级别为 trace,会将操作数据库的 sql 打印出来,开发时设置成 trace 方便定位问题,在生产环境上,将这个日志级别再设置成 error 级别即可。
常用的日志级别按照从高到低依次为:ERROR、WARN、INFO、DEBUG。
Log4j
Log4j 是 Apache 的一个开源项目,通过使用 Log4j,我们可以控制日志信息输送的目的地是控制台、文件、GUI 组件,甚至是套接口服务器、NT 的事件记录器、UNIX Syslog 守护进程等;我们也可以控制每一条日志的输出格式;通过定义每条日志信息的级别,我们能够更加细致地控制日志的生成过程。
组成架构
Log4j 由三个重要的组成构成:日志记录器(Loggers),输出端(Appenders)和日志格式化器(Layout)。
Logger: 控制要启用或禁用哪些日志记录语句,并对日志信息进行级别限制
Appenders: 指定了日志将打印到控制台还是文件中
Layout: 控制日志信息的显示格式
Log4j 中将要输出的 Log 信息定义了 5 种级别,依次为 DEBUG、INFO、WARN、ERROR 和 FATAL,当输出时,只有级别高过配置中规定的级别的信息才能真正的输出,这样就很方便的来配置不同情况下要输出的内容,而不需要更改代码。
日志等级 Level
Log4j 日志等级主要有以下几种:
off:关闭日志,最高等级,任何日志都无法输出
fatal:灾难性错误,在能够输出日志的所有等级中最高
error:错误,一般用于异常信息
warn:警告,一般用于不规范的引用等信息
info:普通信息
debug:调试信息,一般用于程序执行过程
trace:堆栈信息,一般不使用
all:打开所有日志,最低等级,所有日志都可使用
在 Logger 核心类中, 除了 off/all 以外, 其他每个日志等级都对应一组重载的方法,用于记录不同等级的日志。当且仅当方法对应的日志等级大于等于设置的日志等级时,日志才会被记录。
使用
使用 Log4j 只需要导入一个 jar 包
配置方式
在 Resources Root 目录下创建一个 log4j.properties 配置文件,一定要注意:文件的位置和文件名一个都不能错,然后在 properties 文件中添加配置信息
propertis 文件是最常用的配置方式。实际开发过程中,基本都是使用 properties 文件。pripertis 配置文件的配置方式为:
Logback
简单地说,Logback 是一个 Java 领域的日志框架。它被认为是 Log4J 的继承人。logback 是 log4j 的升级,所以 logback 自然比 log4j 有很多优秀的地方。
模块组成
Logback 主要由三个模块 logback-core,logback-classic, logback-access 组成。
logback-core 是其它模块的基础设施,其它模块基于它构建,显然,logback-core 提供了一些关键的通用机制。
logback-classic 的地位和作用等同于 Log4J,它也被认为是 Log4J 的一个改进版,并且它实现了简单日志门面 SLF4J;
logback-access 主要作为一个与 Servlet 容器交互的模块,比如说 tomcat 或者 jetty,提供一些与 HTTP 访问相关的功能。
编辑
三个模块
Logback 组件
Logback 主要组件如下:
Logger:日志的记录器;把他关联到应用对应的 context 上;主要用于存放日志对象;可以自定义日志类型级别
Appender:用于指定日志输出的目的地;目的地可以是控制台,文件,数据库等
Layout:负责把事件转换成字符串;格式化的日志信息的输出;在 logback 中 Layout 对象被封装在 encoder 中
Logback 优点
Logback 主要优点如下:
同样的代码路径,Logback 执行更快
更充分的测试
原生实现了 SLF4J API(Log4J 还需要有一个中间转换层)
内容更丰富的文档
支持 XML 或者 Groovy 方式配置
配置文件自动热加载
从 IO 错误中优雅恢复
自动删除日志归档
自动压缩日志成为归档文件
支持 Prudent 模式,使多个 JVM 进程能记录同一个日志文件
支持配置文件中加入条件判断来适应不同的环境
更强大的过滤器
支持 SiftingAppender(可筛选 Appender)
异常栈信息带有包信息
标签属性
Logback 主要标签属性如下:
configuration:配置的根节点
编辑
配置结构
scan:为 ture 时,若配置文件属性改变会被扫描并重新加载,默认为 true
scanPeriod:监测配置文件是否有修改的时间间隔,若没给出时间单位,默认单位为毫秒;默认时间为 1 分钟;当 scan="true"时生效
debug:为 true 时,将打出 logback 的内部日志信息,实时查看 logback 运行状态;默认值为 false
contextName:上下文名称,默认为“default”,使用此标签可设置为其它名称,用于区分不同应用程序的记录;一旦设置不能修改
appender:configuration 的子节点,负责写日志的组件,有 name 和 class 两个必要属性
name:addender 的名称
class:appender 的全限定名,就是对应的某个具体的 Appender 类名,比如 ConsoleAppender、FileAppender
append:为 true 时,日志被追加到文件结尾,如果是 flase,清空现存的文件,默认值为 true
配置方式
logback 框架会默认加载 classpath 下命名为 logback-spring 或 logback 的配置文件:
ELK
ELK 是软件集合 Elasticsearch、Logstash、Kibana 的简称,由这三个软件及其相关的组件可以打造大规模日志实时处理系统。新增了一个 FileBeat,它是一个轻量级的日志收集处理工具(Agent),Filebeat 占用资源少,适合于在各个服务器上搜集日志后传输给 Logstash,官方也推荐此工具。
Elasticsearch:是一个基于 Lucene 的、支持全文索引的分布式存储和索引引擎,主要负责将日志索引并存储起来,方便业务方检索查询。
Logstash:是一个日志收集、过滤、转发的中间件,主要负责将各条业务线的各类日志统一收集、过滤后,转发给 Elasticsearch 进行下一步处理。
Kibana:是一个可视化工具,主要负责查询 Elasticsearch 的数据并以可视化的方式展现给业务方,比如各类饼图、直方图、区域图等。
Filebeat:隶属于 Beats,是一个轻量级的日志收集处理工具。目前 Beats 包含四种工具:
Packetbeat
(搜集网络流量数据)、Topbeat
(搜集系统、进程和文件系统级别的 CPU 和内存使用情况等数据)、Filebeat
(搜集文件数据)、Winlogbeat
(搜集 Windows 事件日志数据)
编辑
架构图
主要特点
一个完整的集中式日志系统,需要包含以下几个主要特点:
收集:能够采集多种来源的日志数据
传输:能够稳定的把日志数据传输到中央系统
存储:如何存储日志数据
分析:可以支持 UI 分析
警告:能够提供错误报告,监控机制
ELK 提供了一整套解决方案,并且都是开源软件,之间互相配合使用,完美衔接,高效的满足了很多场合的应用。目前主流的一种日志系统。
应用场景
在海量日志系统的运维中,以下几个方面是必不可少的:
分布式日志数据集中式查询和管理;
系统监控,包含系统硬件和应用各个组件的监控;
故障排查;
安全信息和事件管理;
报表功能;
ELK 运行于分布式系统之上,通过搜集、过滤、传输、储存,对海量系统和组件日志进行集中管理和准实时搜索、分析,使用搜索、监控、事件消息和报表等简单易用的功能,帮助运维人员进行线上业务的准实时监控、业务异常时及时定位原因、排除故障、程序研发时跟踪分析 Bug、业务趋势分析、安全与合规审计,深度挖掘日志的大数据价值。同时 Elasticsearch 提供多种 API(REST JAVA PYTHON 等 API)供用户扩展开发,以满足其不同需求。
配置方式
filebeat 的配置,打开 filebeat.yml,进行配置,如下:
logstash 的配置,建一个以.conf
为后缀的文件,或者打开 config 文件夹下的 .conf 文件,这里的配置文件是可以同时启动多个的,而且还有一个功能强大的filter
功能,可以过滤原始数据,如下:
版权声明: 本文为 InfoQ 作者【浅羽技术】的原创文章。
原文链接:【http://xie.infoq.cn/article/311d3d584fda232c7b827d9e7】。文章转载请联系作者。
评论