写点什么

Flink CDC 实时数据同步详细解析

  • 2021 年 11 月 12 日
  • 本文字数:3796 字

    阅读完需:约 12 分钟

1. CDC 是什么

CDC 是 Change Data Capture(变更数据获取)的简称。核心思想是,监测并捕获数据库的变动(包括数据或数据表的插入、更新以及删除等),将这些变更按发生的顺序完整记录下来,写入到消息中间件中以供其他服务进行订阅及消费。


在广义的概念上,只要能捕获数据变更的技术,我们都可以称为 CDC 。通常我们说的 CDC 技术主要面向数据库的变更,是一种用于捕获数据库中数据变更的技术。


CDC 技术应用场景非常广泛:


  • 数据同步,用于备份,容灾;

  • 数据分发,一个数据源分发给多个下游;

  • 数据采集(E),面向数据仓库/数据湖的 ETL 数据集成。

2. CDC 的种类

CDC 主要分为基于查询基于 Binlog 两种方式,我们主要了解一下这两种之间的区别:


3. 传统 CDC 与 Flink CDC 对比

1) 传统 CDC ETL 分析

2) 基于 Flink CDC 的 ETL 分析

2) 基于 Flink CDC 的聚合分析

2) 基于 Flink CDC 的数据打宽

4. Flink-CDC 案例

Flink 社区开发了 flink-cdc-connectors 组件,这是一个可以直接从 MySQL、PostgreSQL 等数据库直接读取全量数据和增量变更数据的 source 组件。


开源地址:https://github.com/ververica/flink-cdc-connectors


示例代码


import com.alibaba.ververica.cdc.connectors.mysql.MySQLSource;import com.alibaba.ververica.cdc.debezium.DebeziumSourceFunction;import com.alibaba.ververica.cdc.debezium.StringDebeziumDeserializationSchema;import org.apache.flink.api.common.restartstrategy.RestartStrategies;import org.apache.flink.runtime.state.filesystem.FsStateBackend;import org.apache.flink.streaming.api.CheckpointingMode;import org.apache.flink.streaming.api.datastream.DataStreamSource;import org.apache.flink.streaming.api.environment.CheckpointConfig;import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import java.util.Properties;
public class FlinkCDC { public static void main(String[] args) throws Exception { //1.创建执行环境 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setParallelism(1); //2.Flink-CDC 将读取 binlog 的位置信息以状态的方式保存在 CK,如果想要做到断点续传,需要从 Checkpoint 或者 Savepoint 启动程序 //2.1 开启 Checkpoint,每隔 5 秒钟做一次 CK env.enableCheckpointing(5000L); //2.2 指定 CK 的一致性语义env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE); //2.3 设置任务关闭的时候保留最后一次 CK 数据env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION); //2.4 指定从 CK 自动重启策略 env.setRestartStrategy(RestartStrategies.fixedDelayRestart(3, 2000L)); //2.5 设置状态后端 env.setStateBackend(new FsStateBackend("hdfs://hadoop102:8020/flinkCDC")); //2.6 设置访问 HDFS 的用户名 System.setProperty("HADOOP_USER_NAME", "atguigu"); //3.创建 Flink-MySQL-CDC 的 Source //initial (default): Performs an initial snapshot on the monitored database tables upon first startup, and continue to read the latest binlog. //latest-offset: Never to perform snapshot on the monitored database tables upon first startup, just read from the end of the binlog which means only have the changes since the connector was started. //timestamp: Never to perform snapshot on the monitored database tables upon first startup, and directly read binlog from the specified timestamp. The consumer will traverse the binlog from the beginning and ignore change events whose timestamp is smaller than the specified timestamp. //specific-offset: Never to perform snapshot on the monitored database tables upon first startup, and directly read binlog from the specified offset. DebeziumSourceFunction<String> mysqlSource = MySQLSource.<String>builder() .hostname("hadoop01") .port(3306) .username("root") .password("000000") .databaseList("gmall-flink") .tableList("gmall-flink.z_user_info") //可选配置项,如果不指定该参数,则会读取上一个配置下的所有表的数据,注意:指定的时候需要使用"db.table"的方式 .startupOptions(StartupOptions.initial()) .deserializer(new StringDebeziumDeserializationSchema()) .build(); //4.使用 CDC Source 从 MySQL 读取数据 DataStreamSource<String> mysqlDS = env.addSource(mysqlSource); //5.打印数据 mysqlDS.print(); //6.执行任务 env.execute(); } }
复制代码

5. Flink SQL 方式的案例

import org.apache.flink.api.common.restartstrategy.RestartStrategies;import org.apache.flink.runtime.state.filesystem.FsStateBackend;import org.apache.flink.streaming.api.CheckpointingMode;import org.apache.flink.streaming.api.environment.CheckpointConfig;import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;public class FlinkSQL_CDC { public static void main(String[] args) throws Exception { //1.创建执行环境 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setParallelism(1); StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env); //2.创建 Flink-MySQL-CDC 的 Source tableEnv.executeSql("CREATE TABLE user_info (" + " id INT," + " name STRING," + " phone_num STRING" + ") WITH (" + " 'connector' = 'mysql-cdc'," + " 'hostname' = 'hadoop01'," + " 'port' = '3306'," + " 'username' = 'root'," + " 'password' = '000000'," + " 'database-name' = 'gmall-flink'," + " 'table-name' = 'z_user_info'" + ")"); tableEnv.executeSql("select * from user_info").print(); env.execute(); }}
复制代码

6. Lambda 架构的实时数仓

Lambda 和 Kappa 架构的概念已在前文中解释,不了解的小伙伴可点击链接:一文读懂大数据实时计算


下图是基于 Flink 和 Kafka 的 Lambda 架构的具体实践,上层是实时计算,下层是离线计算,横向是按计算引擎来分,纵向是按实时数仓来区分:



Lambda 架构是比较经典的架构,以前实时的场景不是很多,以离线为主,当附加了实时场景后,由于离线和实时的时效性不同,导致技术生态是不一样的。Lambda 架构相当于附加了一条实时生产链路,在应用层面进行一个整合,双路生产,各自独立。这在业务应用中也是顺理成章采用的一种方式。


双路生产会存在一些问题,比如加工逻辑 double,开发运维也会 double,资源同样会变成两个资源链路。因为存在以上问题,所以又演进了一个 Kappa 架构。

7. Kappa 架构的实时数仓

Kappa 架构相当于去掉了离线计算部分的 Lambda 架构,具体如下图所示:



Kappa 架构从架构设计来讲比较简单,生产统一,一套逻辑同时生产离线和实时。但是在实际应用场景有比较大的局限性,因为实时数据的同一份表,会使用不同的方式进行存储,这就导致关联时需要跨数据源,操作数据有很大局限性,所以在业内直接用 Kappa 架构生产落地的案例不多见,且场景比较单一。


关于 Kappa 架构,熟悉实时数仓生产的同学,可能会有一个疑问。因为我们经常会面临业务变更,所以很多业务逻辑是需要去迭代的。之前产出的一些数据,如果口径变更了,就需要重算,甚至重刷历史数据。对于实时数仓来说,怎么去解决数据重算问题?


Kappa 架构在这一块的思路是:首先要准备好一个能够存储历史数据的消息队列,比如 Kafka,并且这个消息队列是可以支持你从某个历史的节点重新开始消费的。接着需要新起一个任务,从原来比较早的一个时间节点去消费 Kafka 上的数据,然后当这个新的任务运行的进度已经能够和现在的正在跑的任务齐平的时候,你就可以把现在任务的下游切换到新的任务上面,旧的任务就可以停掉,并且原来产出的结果表也可以被删掉。

8. 流批结合的实时数仓

随着实时 OLAP 技术的发展,目前开源的 OLAP 引擎在性能,易用等方面有了很大的提升,如 Doris、Presto 等,加上数据湖技术的迅速发展,使得流批结合的方式变得简单。


如下图是流批结合的实时数仓:



数据从日志统一采集到消息队列,再到实时数仓,作为基础数据流的建设是统一的。之后对于日志类实时特征,实时大屏类应用走实时流计算。对于 Binlog 类业务分析走实时 OLAP 批处理。


我们看到流批结合的方式与上面几种架构的存储方式发生了变化,由 Kafka 换成了 Iceberg,Iceberg 是介于上层计算引擎和底层存储格式之间的一个中间层,我们可以把它定义成一种“数据组织格式”,底层存储还是 HDFS,那么为什么加了中间层,就对流批结合处理的比较好了呢?Iceberg 的 ACID 能力可以简化整个流水线的设计,降低整个流水线的延迟,并且所具有的修改、删除能力能够有效地降低开销,提升效率。Iceberg 可以有效支持批处理的高吞吐数据扫描和流计算按分区粒度并发实时处理。

发布于: 8 小时前阅读数: 5
用户头像

InfoQ签约作者 2020.11.10 加入

文章首发于公众号:五分钟学大数据。大数据领域原创技术号,深入大数据技术

评论

发布
暂无评论
Flink CDC 实时数据同步详细解析