写点什么

python scrapy 极细拆解,打开 Spider 类看内容,顺手爬了一下优设网

作者:梦想橡皮擦
  • 2021 年 12 月 09 日
  • 本文字数:3992 字

    阅读完需:约 13 分钟

本篇博客为你带来 scrapy.Spider 模块中的相关函数与类,带你再一次认识 scrapy 的细节。


本次采集的目标站点为:优设网

拆解 scrapy.Spider

每次创建一个 spider 文件之后,都会默认生成如下代码:


import scrapy

class UiSpider(scrapy.Spider): name = 'ui' allowed_domains = ['www.uisdc.com'] start_urls = ['http://www.uisdc.com/']
def parse(self, response): self.log()
复制代码


继承的基类 scrapy.Spider 自然就成了我们要研究的第一个内容,进入其源码,发现如下内容。

scrapy.Spider 核心实现的是 start_requests 方法

Spider 主要进行的操作就是初始化 Request 请求,而这些都是通过 start_requests 实现的,详细代码为:


for url in self.start_urls:    yield Request(url, dont_filter=True)
复制代码


start_requests 方法,你可以自己编写同名函数覆盖修改,编写时发现了 make_requests_from_url 方法,该方法在最新版本的 scrapy 中已经被废除。


重写 start_requests 方法 ,需要注意重写时,必须返回一个可迭代对象,并且该对象包含 spider 用于爬取的第 1 个 Request,由于 scrapy 只调用一次该方法,所以你可以将登录站点请求放置到该方法中。


import scrapyfrom scrapy.http import Request

class UiSpider(scrapy.Spider): name = 'ui' allowed_domains = ['www.uisdc.com'] start_urls = ['http://www.uisdc.com/']
def start_requests(self): print("重写 start_requests") yield Request(self.start_urls[0])
def parse(self, response): print(response)
复制代码


将登录信息放置到 start_requests 中,代码如下:


import scrapyfrom scrapy.http import FormRequest

class UiSpider(scrapy.Spider): name = 'ui' allowed_domains = ['www.uisdc.com'] start_urls = ['http://www.uisdc.com/']
def start_requests(self): print("手动 start_requests") yield FormRequest("https://httpbin.org/post", formdata={"user": "ca"}, callback=self.parse)
def parse(self, response): print(response.text)
复制代码

scrapy.Spider 属性值

name 属性:表示爬虫名称,spider 的名称用于 scrapy 定位爬虫,所以非常重要,一般常见的名称方式是使用网站域名(domain),命名 spider,例如 baidu.com 命名为 baidu,但是工作喜欢还是携带 .com 后缀。


allowed_domains 属性:该属性需要配置 offsiteMiddleware 使用,当该中间件启用之后,待采集 URL 的域名如果不在 allowed_domains 列表中,会被禁止访问。domains 内容添加,假设你的目标 URL 是 http://www.baidu.com/123.html,仅填写 baidu.com 即可。


start_urls 属性:起始的 URL 列表,主要用于 start_request 方法进行迭代。


custom_settings 属性:自定义配置,可以覆盖 settings.py 的配置,以字典格式赋值。


    custom_settings = {        "ROBOTSTXT_OBEY": False # 不请求 robot.txt 文件    }
复制代码


crawler 属性:该属性在爬虫启动后,由类方法 from_crawler() 设置。


settings 属性:指定配置文件的实例。


logger 属性:spider 日志输出对象,默认以 spider 名称创建,可以自定义。


self.logger.info('输出响应地址 %s', response.url)logger.info('输出响应地址 %s', response.url)
复制代码


补充一下 scrapy 日志级别


settings.py 中设置 log 级别,只需要增加一行代码:


LOG_LEVEL = 'WARNING'
复制代码


设置为 WARNING 级别,会发现 scrapy 默认的各种调试信息,都不在控制台输出。


scrapy 日志级别与 logging 模块一致。


  • CRITICAL:严重错误;

  • ERROR :一般错误;

  • WARNING: 警告信息;

  • INFO :一般信息;

  • DEBUG:调试信息。


scrapy 中的 settings 中关于日志的配置如下:


  • LOG_ENABLED:默认: True,表示启用 logging;

  • LOG_ENCODING: 默认: utf-8,logging 使用的编码;

  • LOG_FILE 默认: None,日志保存的文件名;

  • LOG_LEVEL: 默认 DEBUG ,log 的最低级别。

scrapy.Spider 实例方法与类方法

from_crawler 类方法在查看源码之后,该方法的功能会比较清晰。


@classmethoddef from_crawler(cls, crawler, *args, **kwargs):    spider = cls(*args, **kwargs)    spider._set_crawler(crawler)    return spider
def _set_crawler(self, crawler): self.crawler = crawler self.settings = crawler.settings crawler.signals.connect(self.close, signals.spider_closed)
复制代码


该方法设置了 crawlersettings 两个属性,该方法在上一篇博客已经有所涉及,直接回顾即可。


parse 方法当请求(Request)没有指定回调参数(callback)时,该方法是 scrapy 用来处理响应的默认回调方法。


log 方法使用 self.log() 方法记录日志。


学习到这里,对 Spider 模块有了一个比较整体的认识。

爬取优设网

接下来进入爬虫采集相关代码编写,有了前文知识铺垫之后,采集代码就变得非常简单了。


import scrapyfrom uisdc.items import UisdcItem

class UiSpider(scrapy.Spider): name = 'ui' allowed_domains = ['www.uisdc.com'] start_urls = ['https://www.uisdc.com/archives'] custom_settings = { "ROBOTSTXT_OBEY": False }
def parse(self, response): # print(response.text) # self.log("测试是否有数据输出", logging.WARNING) items = response.xpath('//div[@id="archive_list"]/div/div[1]/div[1]/div[contains(@class,"item-article")]') for i in items: item = UisdcItem() title = i.xpath(".//h2[@class='item-title']/a/text()").extract_first() author = i.xpath(".//h3[@class='meta-name']/text()").extract_first() tag = i.xpath(".//div[@class='meta-tag']/a/text()").extract_first() item["title"] = title item["author"] = author item["tag"] = tag yield item
复制代码


接下来修改源码,增加 ** Item Loaders** 填充容器机制。通过 from scrapy.loader import ItemLoader 导入新类,该类的构造函数如下:


def __init__(self, item=None, selector=None, response=None, parent=None, **context)
复制代码


其中 item 是容器类,selector 为 Selector 对象,提取填充数据的选择器,response 为 Response 响应对象。


代码修改之后得到如下代码:


import scrapyfrom uisdc.items import UisdcItem
from scrapy.loader import ItemLoader

class UiSpider(scrapy.Spider): name = 'ui' allowed_domains = ['www.uisdc.com'] start_urls = ['https://www.uisdc.com/archives'] custom_settings = { "ROBOTSTXT_OBEY": False }
def parse(self, response): items = response.xpath('//div[@id="archive_list"]/div/div[1]/div[1]/div[contains(@class,"item-article")]') for i in items: l = ItemLoader(item=UisdcItem(), selector=i) l.add_xpath('title', ".//h2[@class='item-title']/a/text()") l.add_xpath('author', ".//h3[@class='meta-name']/text()") l.add_xpath('tag', ".//div[@class='meta-tag']/a/text()") yield l.load_item()
复制代码


其中需要注意 l = ItemLoader(item=UisdcItem(), selector=i) 使用 selector 参数,并赋值为迭代变量 i,如果使用 response 会得到重复数据。


最后,当所有数据被收集起来之后, 调用 ItemLoader.load_item() 方法, 返回 Item 对象。


输出 item 对象,发现每一个数据都是列表。


{'author': ['土拨鼠'], 'tag': ['产品设计'], 'title': ['6000+干货!资深总监的四条产品设计工作观(附私藏神器包)']}
复制代码


接下来需要处理每一项的值,ItemLoader 得到的数据,在存入 item 容器前,是支持对数据进行预处理的,即输入处理器输出处理器,修改 items.py 文件。


from scrapy.item import Item, Fieldfrom scrapy.loader.processors import MapCompose, TakeFirst

def ext(value): return "新闻:" + value

class UisdcItem(Item): # define the fields for your item here like: title = Field( input_processor=MapCompose(ext), output_processor=TakeFirst() ) author = Field(output_processor=TakeFirst()) tag = Field(output_processor=TakeFirst())
复制代码


Field 字段的两个参数


  • 输入处理器(input_processor):可以在传进来的值做一些预处理。

  • 输出处理器(output_processor) :输出值前最后的一步处理。


其中用到了 TakeFirst(),返回第一个非空(non-null/ non-empty)值,常用于单值字段的输出处理器,无参数。


还用到了 MapCompose,能把多个函数执行的结果按顺序组合起来,产生最终的输出,通常用于输入处理器。


其余内置的处理器如下


  • Identity:不进行任何处理,返回原来的数据,无参数;

  • Join:返回用分隔符连接后的值,分隔符默认为空格;

  • Compose:用给定的多个函数的组合,来构造处理器,list 对象一次被传递到各个函数中,由最后一个函数返回整个处理器的输出,默认情况下遇到 None值(list 中有 None 值)的时候停止处理,可以通过传递参数 stop_on_none = False 改变这种行为;

  • MapCompose:输入值是被迭代的处理的,List 对象中的每一个元素被单独传入,依次执行对应函数。


关于 item loader 还有一些其它的知识点,我们后面再聊。

写在后面

今天是持续写作的第 <font color=red>247</font> / 365 天。期待 <font color=#04a9f4>关注</font>,<font color=#04a9f4>点赞</font>、<font color=#04a9f4>评论</font>、<font color=#04a9f4>收藏</font>。


发布于: 19 小时前阅读数: 6
用户头像

爬虫 100 例作者,蓝桥签约作者,博客专家 2021.02.06 加入

6 年产品经理+教学经验,3 年互联网项目管理经验; 互联网资深爱好者; 沉迷各种技术无法自拔,导致年龄被困在 25 岁; CSDN 爬虫 100 例作者。 个人公众号“梦想橡皮擦”。

评论

发布
暂无评论
python scrapy极细拆解,打开Spider类看内容,顺手爬了一下优设网