ICASSP 2022 | 用于多模态情感识别的 KS-Transformer
2020 年,优必选科技与华南理工大学合作共建了“类人情感智能”联合创新实验室,在双方强强联合下,联合创新实验室在相关技术上不断取得突破。近期,该实验室的最新论文《Key-Sparse Transformer For Multimodal Speech Emotion Recognition》(用于多模态情感识别的 KS-Transformer),就入选了刚刚结束的 ICASSP 2022(International Conference on Acoustics, Speech and Signal Processing) ,该会议由电气电子工程师学会(IEEE)主办,是全世界最大、最全面的声学、语音和信号处理国际会议。
以下是该论文的核心观点。
多模态情感识别是人机交互中的重要技术,也是人工智能走向类人智能时所需要攻克的关键难题。在以往的大多数研究工作当中,情感识别系统会考虑输入语音信号或文字信号中的所有信息。但是,在整段的信号里面,蕴含有情感信息的片段往往只占整体中的一部分。在情感识别过程中,情感无关的信息会成为系统中的噪声,从而影响识别系统的性能。因此,如何让系统尽量关注信号中蕴含有丰富情感信息的片段,是提高情感识别准确率的关键。
我们基于 Transformer 架构,提出了一种全新的键稀疏 Transformer 结构(Key-Sparse Transformer, KS-Transformer),可以动态地判断文本信号中的每一个单词,亦或是语音信号中每一帧的重要性,从而帮助模型尽可能把注意力放在与情感相关的片段上。此外,为了更好地利用好多模态信息,我们提出了一个串联的互注意力模块(Cascaded Cross-Attention Block,CCAB),更好融合不同模态之间的信息。
传统的方法:
Transformer
传统的 Transformer 模型使用了信号中的所有信息。以一段在 IEMOCAP 数据库中的文本信号“Okay, look it’s a beautiful day. Why are we arguing?”为例,传统的 Transformer 关注到了文本中的每一个单词,对每一个单词都分配了注意力权重,然而,“beautiful”和“arguing”这两个单词包含了该文本中绝大部分的情感信息,需要模型更多的关注。
自动地寻找情感片段:
KS-Transformer
首先,我们重新思考了 Transformer 中的注意力机制,其计算过程如下所示:
其中,W 是权重矩阵,attn 是注意力计算的输出。值得注意的是,对于语音信号,QKV 中的每一个 token 代表语音中的某一帧。对于文本信号,QKV 则代表文本中的某一个单词/字。权重矩阵 W 中的每一行,代表着 V 中每一个 token 所分配到的注意力权重。我们把 V 中同一个 token 的所有注意力权重进行相加,其和值则代表该 token 在整个样本中的重要性。直观来看,如果一个 token 很重要,那么在注意力机制计算的过程中,其他 token 都应该给它分配一个较大的注意力权重,其和值也必然更加大。相反,如果一个 token 不重要,其他 token 都只会分配很小的注意力权重给它,其和值也将很小。我们挑选出 k 个 token,他们具有最大的和值,并保留他们的注意力权重,而将其他 token 的注意力权重置零。最终,我们设计的注意力机制计算流程如下图所示:
为了更好地利用好文本与语音信号的信息,本文提出了一个串联的互注意力模块(Cascaded Cross-Attention Block,CCAB),通过增加不同模态之间的交互次数使模态间的融合更加充分。其详细结构如下图所示:
每经过一个 CCAB 模块,模态 B 中的信息就通过 KS-Transformer 注入到了模态 A。经过多个 CCAB 模块,可以使模态 A 和模态 B 中的信息实现多次的交互。
实验结果
以下实验在常用情感数据库 IEMOCAP 以及最新发布的大规模情感数据库 LSSED 中进行。
1)可视化分析
同样以文本信号“Okay, look it’s a beautiful day. Why are we arguing?”为例,我们对原始 Transformer 与我们所提出的 KS-Transformer 中的注意力权重进行了可视化的分析,结果如下图所示。可以看到,Transformer 给句子中的每一个单词都分配了注意力权重,包括一些与情感相关性不大的单词,使得模型容易出现过拟合的现象。而 KS-Transformer 通过稀疏的注意力机制,过滤掉了大部分的噪声单词,减少模型的复杂度的同时提升了模型的鲁棒性。
2)探讨最优的稀疏度
为了探讨参数 k 的最优值,我们将 k 从 10%变到 90%,其结果如下:
我们发现,因为 IEMOCAP 是一个相对较小的数据库,当 k 的值大于 50%时,模型开始过拟合,并维持 UA 值不变。而对于大规模的数据集 LSSED,当 k 的值大于 50%时,UA 值因为噪声信息的引入而快速下降。相反,当 k 小于 50%时,由于模型使用到的信息太少,只能收敛到一个较差的局部点,性能也会变差。因此,我们将 k 的值设置为 50%。
3)多模态交互分析
使用 CCAB 的数量代表不同模态之间的交互次数。当 CCAB 的数量从 0 增加到 3 时,模型的性能逐步提升。当数量为 3 时,模型取得了最好的性能。这也说明模态之间进行多次交互的重要性。
在人机协作的时代,人机情感交互变得尤为重要,也是科技社会人文关怀的重要体现。未来,优必选科技与华南理工大学将持续在多模态情感计算、类人情感交互等类人情感智能的关键领域开展高水平合作研究,促成类人情感智能技术在机器人产业化中的应用,深入推动人工智能行业的发展。
版权声明: 本文为 InfoQ 作者【优必选科技】的原创文章。
原文链接:【http://xie.infoq.cn/article/f9177604c47cdf92f8fac71a1】。文章转载请联系作者。
评论