写点什么

一行代码可以做什么?

作者:Jackpop
  • 2022 年 6 月 21 日
  • 本文字数:1786 字

    阅读完需:约 6 分钟

hello,大家好,我是 Jackpop,硕士毕业于哈尔滨工业大学,曾在华为、阿里等大厂工作,如果你对升学、就业、技术提升等有疑惑,不妨交个朋友:


我是Jackpop,我们交个朋友吧!


可以做的事情太多了!一行代码足以把程序的执行速度提升超过 10000 倍!




缓存是一项从底层到高层都广泛应用的技术,无论是前端还是后端,有一定开发经验的程序员对缓存应该都不陌生。缓存是指可以进行高速数据交换的存储器,它先于内存与 CPU 交换数据,因此速率很快。


在 Python 开发过程中,有一些函数的结果可能会被反复调用,如果这个函数耗时较少还无伤大雅。


但是,如果一个函数耗时 10 分钟,或者频繁的发送 rest 请求,那么耗时就会呈现非线性上升。


那么,对于很多开发人员抱怨的 Python,是否能够通过缓存来提升它的开发效率?


答案是肯定的!


本文就来介绍如果利用缓存这项技术,实现 1 行代码提升 Python 执行速度。

LRU

不同的编程语言,会有不同 的缓存策略,例如,通过哈希映射、优先级队列等实现缓存。因此,不同的编程语言,在缓存的解决方案方面具有很大差异,可能需要几分钟,也可能需要几小时。


但是,在 Python 中,标准工具包 functools 实现了一种名为 LRU(Least Recently Used)的缓存策略,可以通过传入参数,来设定缓存最近多少次的计算结果,如果传入参数为 None,那么会进行无限缓存。


现在,为了让大家更加容易理解,先来举一个例子,


import time as ttdef func():    num = 0    for i in range(10):        num += i    return numdef main():    return func() + func() + func() + func() + func() + func() + func()t1 = tt.time()main()print("Time taken: {}".format(tt.time() - t1))# 9.05990e-6
复制代码


在这个示例中,反复的调用了 func 函数,总共耗时为 0.009 秒。


下面,通过 functools 工具包下 LRU 缓存再跑一下,


import time as ttimport functools@functools.lru_cache(maxsize=5)def func():    num = 0    for i in range(10):        num += i    return numdef main():    return func() + func() + func() + func() + func() + func() + func()t1 = tt.time()main()print("Time taken: {}".format(tt.time() - t1))# 4.768371e-06
复制代码


通过数据对比,发现运行时间减少了将近 50%。


在调用 lru_cache 时,需要配置一个 maxsize 的参数,它代表着缓存最近几次的函数计算结果,如果参数为 none 则不进行缓存。


通过前面的对比,会发现利用缓存机制时间差别会很大,这是由于,重复调用函数,需要反复执行计算过程,而利用缓存,我们只需要进行快速读写,不再需要重复执行计算过程,这样会节省大部分时间。


但是,由于前面计算过程较为简单,只涉及简单的加法运算,在耗时方面给人直观的感受并不是很强烈。


那下面在以另外斐波那契数列的例子进行对比一下。


应该很多同学对斐波那契数列都不陌生,一个很典型的递归问题,在教材上也频繁的出现。


由于它递归计算的过程中,还会用到之前计算的结果,因此会涉及较多的重复计算,下面先看一下正常计算的耗时情况。


import time as ttdef fib(n):  if n <= 1:    return n  return fib(n-1) + fib(n-2)t1 = tt.time()fib(30)print("Time taken: {}".format(tt.time() - t1))# 0.2073
复制代码


加一行 @functools.lru_cache(maxsize=5) 之后,看看效果:


import time as ttimport functools@functools.lru_cache(maxsize=5)def fib(n):  if n <= 1:    return n  return fib(n-1) + fib(n-2)t1 = tt.time()fib(30)print("Time taken: {}".format(tt.time() - t1))# 1.811981e-05
复制代码


0.2073 秒对比 2.0981e-5 秒之间差了 4 个量级,快了 10000+倍!这样给人的直观感受应该就非常强烈了。


在涉及一些简单运算的过程中,即便是重复计算也无伤大雅。但是,如果涉及大量数据计算或者网络请求这类耗时的计算,利用缓存机制,只需要 1 行代码就可以节省可观的时间。既比重复计算节省时间,也要比多余定义变量简单。



干货

最近,为了方便大家,我花费了半个月的时间把这几年来收集的各种技术干货整理到一起,其中内容包括但不限于 Python、机器学习、深度学习、计算机视觉、推荐系统、Linux、工程化、Java,内容多达 5T+,我把各个资源下载链接整理到一个文档内,目录如下:



所有干货送给大家,希望能够点赞支持一下!


https://pan.baidu.com/s/1eks7CUyjbWQ3A7O9cmYljA (提取码:0000)

发布于: 刚刚阅读数: 4
用户头像

Jackpop

关注

还未添加个人签名 2020.09.16 加入

公众号:平凡而诗意,微信:code_7steps,全网粉丝超20万,技术进阶、优质资源、实用工具,欢迎关注!

评论

发布
暂无评论
一行代码可以做什么?_Jackpop_InfoQ写作社区