探索内存原理的内存映射文件 (图文详解)
一直都对内存映射文件这个概念很模糊,不知道它和虚拟内存有什么区别,而且映射这个词也很让人迷茫,今天终于搞清楚了。下面,我先解释一下我对映射这个词的理解,再区分一下几个容易混淆的概念,之后,什么是内存映射就很明朗了。
从事十年嵌入式转内核开发(23K到45K),给兄弟们的一些建议
原理
首先,“映射”这个词,就和数学课上说的“一一映射”是一个意思,就是建立一种一一对应关系,在这里主要是只 硬盘上文件 的位置与进程 逻辑地址空间 中一块大小相同的区域之间的一一对应,如图 1 中过程 1 所示。这种对应关系纯属是逻辑上的概念,物理上是不存在的,原因是进程的逻辑地址空间本身就是不存在的。在内存映射的过程中,并没有实际的数据拷贝,文件没有被载入内存,只是逻辑上被放入了内存,具体到代码,就是建立并初始化了相关的数据结构(struct address_space),这个过程有系统调用 mmap()实现,所以建立内存映射的效率很高。
既然建立内存映射没有进行实际的数据拷贝,那么进程又怎么能最终直接通过内存操作访问到硬盘上的文件呢?那就要看内存映射之后的几个相关的过程了。
mmap()会返回一个指针 ptr,它指向进程逻辑地址空间中的一个地址,这样以后,进程无需再调用 read 或 write 对文件进行读写,而只需要通过 ptr 就能够操作文件。但是 ptr 所指向的是一个逻辑地址,要操作其中的数据,必须通过 MMU 将逻辑地址转换成物理地址,如图 1 中过程 2 所示。这个过程与内存映射无关。
前面讲过,建立内存映射并没有实际拷贝数据,这时,MMU 在地址映射表中是无法找到与 ptr 相对应的物理地址的,也就是 MMU 失败,将产生一个缺页中断,缺页中断的中断响应函数会在 swap 中寻找相对应的页面,如果找不到(也就是该文件从来没有被读入内存的情况),则会通过 mmap()建立的映射关系,从硬盘上将文件读取到物理内存中,如图 1 中过程 3 所示。这个过程与内存映射无关。
如果在拷贝数据时,发现物理内存不够用,则会通过虚拟内存机制(swap)将暂时不用的物理页面交换到硬盘上,如图 1 中过程 4 所示。这个过程也与内存映射无关。
效率
从代码层面上看,从硬盘上将文件读入内存,都要经过文件系统进行数据拷贝,并且数据拷贝操作是由文件系统和硬件驱动实现的,理论上来说,拷贝数据的效率是一样的。但是通过内存映射的方法访问硬盘上的文件,效率要比 read 和 write 系统调用高,这是为什么呢?原因是 read()是系统调用,其中进行了数据拷贝,它首先将文件内容从硬盘拷贝到内核空间的一个缓冲区,如图 2 中过程 1,然后再将这些数据拷贝到用户空间,如图 2 中过程 2,在这个过程中,实际上完成了 两次数据拷贝 ;而 mmap()也是系统调用,如前所述,mmap()中没有进行数据拷贝,真正的数据拷贝是在缺页中断处理时进行的,由于 mmap()将文件直接映射到用户空间,所以中断处理函数根据这个映射关系,直接将文件从硬盘拷贝到用户空间,只进行了 一次数据拷贝 。因此,内存映射的效率要比 read/write 效率高。
下面这个程序,通过 read 和 mmap 两种方法分别对硬盘上一个名为“mmap_test”的文件进行操作,文件中存有 10000 个整数,程序两次使用不同的方法将它们读出,加 1,再写回硬盘。通过对比可以看出,read 消耗的时间将近是 mmap 的两到三倍。
输出结果:
内核资料直通车:最新Linux内核源码资料文档+视频资料
版权声明: 本文为 InfoQ 作者【Linux爱好者】的原创文章。
原文链接:【http://xie.infoq.cn/article/f34968ca0bc1839b4463177b3】。文章转载请联系作者。
评论