【建议收藏】吐血整理 Golang 面试干货 21 问 - 吊打面试官 -1
Golang 面试分享来了,为了帮助大家更好的面试,笔者总结一份相关的 Golang 知识的面试问题,希望能帮助大家。
问:Go 函数参数传递方式?
Go 的函数参数传递都是值传递。所谓值传递:指在调用函数时将实际参数复制一份传递到函数中,这样在函数中如果对参数进行修改,将不会影响到实际参数。参数传递还有引用传递,所谓引用传递是指在调用函数时将实际参数的地址传递到函数中,那么在函数中对参数所进行的修改,将影响到实际参数。
问:Go 函数参数传递是值传递,为什么 map,slice,chan 可能在函数内被修改?
答:因为 Go 里面的 map,slice,chan 是引用类型。变量区分值类型和引用类型。所谓值类型:变量和变量的值存在同一个位置。所谓引用类型:变量和变量的值是不同的位置,变量的值存储的是对值的引用。但并不是 map,slice,chan 的所有的变量在函数内都能被修改,不同数据类型的底层存储结构和实现可能不太一样,情况也就不一样。
问:讲讲 Go 的 slice 底层数据结构和一些特性?
答:Go 的 slice 底层数据结构是由一个 array 指针指向底层数组,len 表示切片长度,cap 表示切片容量。slice 的主要实现是扩容。对于 append 向 slice 添加元素时,假如 slice 容量够用,则追加新元素进去,slice.len++,返回原来的 slice。当原容量不够,则 slice 先扩容,扩容之后 slice 得到新的 slice,将元素追加进新的 slice,slice.len++,返回新的 slice。对于切片的扩容规则:当切片比较小时(容量小于 1024),则采用较大的扩容倍速进行扩容(新的扩容会是原来的 2 倍),避免频繁扩容,从而减少内存分配的次数和数据拷贝的代价。当切片较大的时(原来的 slice 的容量大于或者等于 1024),采用较小的扩容倍速(新的扩容将扩大大于或者等于原来 1.25 倍),主要避免空间浪费,网上其实很多总结的是 1.25 倍,那是在不考虑内存对齐的情况下,实际上还要考虑内存对齐,扩容是大于或者等于 1.25 倍。(关于刚才问的 slice 为什么传到函数内可能被修改,如果 slice 在函数内没有出现扩容,函数外和函数内 slice 变量指向是同一个数组,则函数内复制的 slice 变量值出现更改,函数外这个 slice 变量值也会被修改。如果 slice 在函数内出现扩容,则函数内变量的值会新生成一个数组(也就是新的 slice,而函数外的 slice 指向的还是原来的 slice,则函数内的修改不会影响函数外的 slice。)
问:讲讲 Go 的 map 底层数据结构和一些特性,map 是否是线程安全?
答:golang 中 map 是一个 kv 对集合。底层使用 hash table,用链表来解决冲突 ,出现冲突时,不是每一个 key 都申请一个结构通过链表串起来,而是以 bmap 为最小粒度挂载,一个 bmap 可以放 8 个 kv。在哈希函数的选择上,会在程序启动时,检测 cpu 是否支持 aes,如果支持,则使用 aes hash,否则使用 memhash。每个 map 的底层结构是 hmap,是有若干个结构为 bmap 的 bucket 组成的数组。每个 bucket 底层都采用链表结构。hmap 的结构如下:
map 的容量大小
底层调用 makemap 函数,计算得到合适的 B,map 容量最多可容纳 6.52^B 个元素,6.5 为装载因子阈值常量。装载因子的计算公式是:装载因子=填入表中的元素个数/散列表的长度,装载因子越大,说明空闲位置越少,冲突越多,散列表的性能会下降。底层调用 makemap 函数,计算得到合适的 B,map 容量最多可容纳 6.52^B 个元素,6.5 为装载因子阈值常量。装载因子的计算公式是:装载因子=填入表中的元素个数/散列表的长度,装载因子越大,说明空闲位置越少,冲突越多,散列表的性能会下降。
触发 map 扩容的条件
1)装载因子超过阈值,源码里定义的阈值是 6.5。
2)overflow 的 bucket 数量过多 map 的 bucket 定位和 key 的定位高八位用于定位 bucket,低八位用于定位 key,快速试错后再进行完整对比
问:讲讲 Go 的 chan 底层数据结构和主要使用场景
答:channel 的数据结构包含 qccount 当前队列中剩余元素个数,dataqsiz 环形队列长度,即可以存放的元素个数,buf 环形队列指针,elemsize 每个元素的大小,closed 标识关闭状态,elemtype 元素类型,sendx 队列下表,指示元素写入时存放到队列中的位置,recv 队列下表,指示元素从队列的该位置读出。recvq 等待读消息的 goroutine 队列,sendq 等待写消息的 goroutine 队列,lock 互斥锁,chan 不允许并发读写。
无缓冲和有缓冲区别:
管道没有缓冲区,从管道读数据会阻塞,直到有协程向管道中写入数据。同样,向管道写入数据也会阻塞,直到有协程从管道读取数据。管道有缓冲区但缓冲区没有数据,从管道读取数据也会阻塞,直到协程写入数据,如果管道满了,写数据也会阻塞,直到协程从缓冲区读取数据。
channel 的一些特点
读写值 nil 管道会永久阻塞
关闭的管道读数据仍然可以读数据
往关闭的管道写数据会 panic
关闭为 nil 的管道 panic
关闭已经关闭的管道 panic
向 channel 写数据的流程:
如果等待接收队列 recvq 不为空,说明缓冲区中没有数据或者没有缓冲区,此时直接从 recvq 取出 G,并把数据写入,最后把该 G 唤醒,结束发送过程;
如果缓冲区中有空余位置,将数据写入缓冲区,结束发送过程;
如果缓冲区中没有空余位置,将待发送数据写入 G,将当前 G 加入 sendq,进入睡眠,等待被读 goroutine 唤醒;
向 channel 读数据的流程:
如果等待发送队列 sendq 不为空,且没有缓冲区,直接从 sendq 中取出 G,把 G 中数据读出,最后把 G 唤醒,结束读取过程;
如果等待发送队列 sendq 不为空,此时说明缓冲区已满,从缓冲区中首部读出数据,把 G 中数据写入缓冲区尾部,把 G 唤醒,结束读取过程;
如果缓冲区中有数据,则从缓冲区取出数据,结束读取过程;将当前 goroutine 加入 recvq,进入睡眠,等待被写 goroutine 唤醒;
使用场景:
消息传递、消息过滤,信号广播,事件订阅与广播,请求、响应转发,任务分发,结果汇总,并发控制,限流,同步与异步
问:讲讲 Go 的 select 底层数据结构和一些特性?
答:简介:go 的 select 为 golang 提供了多路 IO 复用机制,和其他 IO 复用一样,用于检测是否有读写事件是否 ready。linux 的系统 IO 模型有 select,poll,epoll,go 的 select 和 linux 系统 select 非常相似。
数据结构如下:
select 结构组成主要是由 case 语句和执行的函数组成 select 实现的多路复用是:每个线程或者进程都先到注册和接受的 channel(装置)注册,然后阻塞,然后只有一个线程在运输,当注册的线程和进程准备好数据后,装置会根据注册的信息得到相应的数据。
select 的特性
select 操作至少要有一个 case 语句,并且不能出现读写 nil 的 channel,否则会报错。
select 仅支持管道,而且是单协程操作。
每个 case 语句仅能处理一个管道,要么读要么写。
多个 case 语句的执行顺序是随机的。
存在 default 语句,select 将不会阻塞,但是存在 default 会影响性能。
问:讲讲 Go 的 defer 底层数据结构和一些特性?
答:每个 defer 语句都对应一个_defer 实例,多个实例使用指针连接起来形成一个单连表,保存在 gotoutine 数据结构中,每次插入_defer 实例,均插入到链表的头部,函数结束再一次从头部取出,从而形成后进先出的效果。defer 的规则总结:
延迟函数的参数是 defer 语句出现的时候就已经确定了的。
延迟函数执行按照后进先出的顺序执行,即先出现的 defer 最后执行。
延迟函数可能操作主函数的返回值。
申请资源后立即使用 defer 关闭资源是个好习惯。
问:Go 中解析 tag 是怎么实现的?反射原理是什么?
答:Go 中解析的 tag 是通过反射实现的,反射是指计算机程序在运行时(Run time)可以访问、检测和修改它本身状态或行为的一种能力或动态知道给定数据对象的类型和结构,并有机会修改它。反射将接口变量转换成反射对象 Type 和 Value;反射可以通过反射对象 Value 还原成原先的接口变量;反射可以用来修改一个变量的值,前提是这个值可以被修改。
问:讲讲 Go 的 GPM 模型
答:G 代表着 goroutine,P 代表着上下文处理器,M 代表 thread 线程,在 GPM 模型,有一个全局队列(Global Queue):存放等待运行的 G,还有一个 P 的本地队列:也是存放等待运行的 G,但数量有限,不超过 256 个。GPM 的调度流程从 go func()开始创建一个 goroutine,新建的 goroutine 优先保存在 P 的本地队列中,如果 P 的本地队列已经满了,则会保存到全局队列中。M 会从 P 的队列中取一个可执行状态的 G 来执行,如果 P 的本地队列为空,就会从其他的 MP 组合偷取一个可执行的 G 来执行,当 M 执行某一个 G 时候发生系统调用或者阻塞,M 阻塞,如果这个时候 G 在执行,runtime 会把这个线程 M 从 P 中摘除,然后创建一个新的操作系统线程来服务于这个 P,当 M 系统调用结束时,这个 G 会尝试获取一个空闲的 P 来执行,并放入到这个 P 的本地队列,如果这个线程 M 变成休眠状态,加入到空闲线程中,然后整个 G 就会被放入到全局队列中。关于 G,P,M 的个数问题,G 的个数理论上是无限制的,但是受内存限制,P 的数量一般建议是逻辑 CPU 数量的 2 倍,M 的数据默认启动的时候是 10000,内核很难支持这么多线程数,所以整个限制客户忽略,M 一般不做设置,设置好 P,M 一般都是要大于 P。
问:讲讲 Go 的 GC 回收机制
答:Go 的 GC 回收有三次演进过程,Go V1.3 之前普通标记清除(mark and sweep)方法,整体过程需要启动 STW,效率极低。GoV1.5 三色标记法,堆空间启动写屏障,栈空间不启动,全部扫描之后,需要重新扫描一次栈(需要 STW),效率普通。GoV1.8 三色标记法,混合写屏障机制:栈空间不启动(全部标记成黑色),堆空间启用写屏障,整个过程不要 STW,效率高。
Go1.3 之前的版本所谓标记清除是先启动 STW 暂停,然后执行标记,再执行数据回收,最后停止 STW。Go1.3 版本标记清除做了点优化,流程是:先启动 STW 暂停,然后执行标记,停止 STW,最后再执行数据回收。
Go1.5 三色标记主要是插入屏障和删除屏障,写入屏障的流程:程序开始,全部标记为白色,1)所有的对象放到白色集合,2)遍历一次根节点,得到灰色节点,3)遍历灰色节点,将可达的对象,从白色标记灰色,遍历之后的灰色标记成黑色,4)由于并发特性,此刻外界向在堆中的对象发生添加对象,以及在栈中的对象添加对象,在堆中的对象会触发插入屏障机制,栈中的对象不触发,5)由于堆中对象插入屏障,则会把堆中黑色对象添加的白色对象改成灰色,栈中的黑色对象添加的白色对象依然是白色,6)循环第 5 步,直到没有灰色节点,7)在准备回收白色前,重新遍历扫描一次栈空间,加上 STW 暂停保护栈,防止外界干扰(有新的白色会被添加成黑色)在 STW 中,将栈中的对象一次三色标记,直到没有灰色,8)停止 STW,清除白色。至于删除写屏障,则是遍历灰色节点的时候出现可达的节点被删除,这个时候触发删除写屏障,这个可达的被删除的节点也是灰色,等循环三色标记之后,直到没有灰色节点,然后清理白色,删除写屏障会造成一个对象即使被删除了最后一个指向它的指针也依旧可以活过这一轮,在下一轮 GC 中被清理掉。
GoV1.8 混合写屏障规则是:1)GC 开始将栈上的对象全部扫描并标记为黑色(之后不再进行第二次重复扫描,无需 STW),2)GC 期间,任何在栈上创建的新对象,均为黑色。3)被删除的对象标记为灰色。4)被添加的对象标记为灰色。
问:讲讲 Go 中主协程如何等待其余协程退出
答:Go 的 sync.WaitGroup 是等待一组协程结束,sync.WaitGroup 只有 3 个方法,Add()是添加计数,Done()减去一个计数,Wait()阻塞直到所有的任务完成。Go 里面还能通过有缓冲的 channel 实现其阻塞等待一组协程结束,这个不能保证一组 goroutine 按照顺序执行,可以并发执行协程。Go 里面能通过无缓冲的 channel 实现其阻塞等待一组协程结束,这个能保证一组 goroutine 按照顺序执行,但是不能并发执行。
问:Go 中的 make 和 new 的区别?
答:make 和 new 都是 golang 用来分配内存的內建函数,且在堆上分配内存,make 即分配内存,也初始化内存。new 只是将内存清零,并没有初始化内存。make 是用于引用类型(map,chan,slice)的创建,返回引用类型的本身,new 创建的是指针类型,new 可以分配任意类型的数据,返回的是指针。
问:Go 中 context 结构是什么样的?使用场景和用途
答:Go 的 Context 的数据结构包含 Deadline,Done,Err,Value,Deadline 方法返回一个 time.Time,表示当前 Context 应该结束的时间,ok 则表示有结束时间,Done 方法当 Context 被取消或者超时时候返回的一个 close 的 channel,告诉给 context 相关的函数要停止当前工作然后返回了,Err 表示 context 被取消的原因,Value 方法表示 context 实现共享数据存储的地方,是协程安全的。context 在业务中是经常被使用的,其主要的应用 1:上下文控制,2:多个 goroutine 之间的数据交互等,3:超时控制:到某个时间点超时,过多久超时。
问:Go 中 rune 类型
答:rune 类型实质其实就是 int32,在处理字符串及其便捷的字符单位。它会自动按照字符独立的单位去处理方便我们在遍历过程中按照我们想要的方式去遍历。
问:Go 如何捕获异常
答:Go 的异常处理主要通过 defer func(){}()实现闭包,函数内 if err :=revover();err!=nil{}来实现,if 里面打印异常,关闭资源,或者退出此函数等。完整代码如下:
问:Go 语言中不同的类型如何比较是否相等?
答:像 string,int,float interface 等可以通过 reflect.DeepEqual 和等于号进行比较,像 slice,struct,map 则一般使用 reflect.DeepEqual 来检测是否相等。
问:Go 语言 uint32 最大值加 1 会怎么样?
答:溢出,报错
问:协程,线程,进程的区别?
答:
进程:是应用程序的启动实例,每个进程都有独立的内存空间,不同的进程通过进程间的通信方式来通信。
线程:从属于进程,每个进程至少包含一个线程,线程是 CPU 调度的基本单位,多个线程之间可以共享进程的资源并通过共享内存等线程间的通信方式来通信。
协程:为轻量级线程,与线程相比,协程不受操作系统的调度,协程的调度器由用户应用程序提供,协程调度器按照调度策略把协程调度到线程中运行。
问:Go 中 init 函数的特征
答:一个包下可以有多个 init 函数,每个文件也可以有多个 init 函数。多个 init 函数按照它们的文件名顺序逐个初始化。应用初始化时初始化工作的顺序是,从被导入的最深层包开始进行初始化,层层递出最后到 main 包。不管包被导入多少次,包内的 init 函数只会执行一次。应用初始化时初始化工作的顺序是,从被导入的最深层包开始进行初始化,层层递出最后到 main 包。但包级别变量的初始化先于包内 init 函数的执行。
问:Go 中 uintptr 和 unsafe.Pointer 的区别?
答:unsafe.Pointer 是通用指针类型,它不能参与计算,任何类型的指针都可以转化成 unsafe.Pointer,unsafe.Pointer 可以转化成任何类型的指针,uintptr 可以转换为 unsafe.Pointer,unsafe.Pointer 可以转换为 uintptr。uintptr 是指针运算的工具,但是它不能持有指针对象(意思就是它跟指针对象不能互相转换),unsafe.Pointer 是指针对象进行运算(也就是 uintptr)的桥梁。
问:知道 golang 的内存逃逸吗?什么情况下会发生内存逃逸?
答:1)本该分配到栈上的变量,跑到了堆上,这就导致了内存逃逸。2)栈是高地址到低地址,栈上的变量,函数结束后变量会跟着回收掉,不会有额外性能的开销。3)变量从栈逃逸到堆上,如果要回收掉,需要进行 gc,那么 gc 一定会带来额外的性能开销。编程语言不断优化 gc 算法,主要目的都是为了减少 gc 带来的额外性能开销,变量一旦逃逸会导致性能开销变大。内存逃逸的情况如下:
方法内返回局部变量指针。
向 channel 发送指针数据。
在闭包中引用包外的值。
在 slice 或 map 中存储指针。
切片(扩容后)长度太大。
在 interface 类型上调用方法。
这次先给大家整理 21 问,后面还有还会有第二篇,有想问更多面试问题的请加微信联系。
参考文献:
https://zengzhihai.com
https://www.bookstack.cn/read/golang_development_notes/zh-9.13.md
书籍《go 专家编程》
版权声明: 本文为 InfoQ 作者【利志分享】的原创文章。
原文链接:【http://xie.infoq.cn/article/efbca4ab9c9ae66c2a49aa33a】。文章转载请联系作者。
评论