redis 精讲系列介绍八 - 淘汰策略
- 2022 年 6 月 22 日
本文字数:12772 字
阅读完需:约 42 分钟
LRU
说完了过期策略再说下淘汰策略,redis 使用的策略是近似的 lru 策略,为什么是近似的呢,先来看下什么是 lru,看下 wiki 的介绍
,图中一共有四个槽的存储空间,依次访问顺序是 A B C D E D F,当第一次访问 D 时刚好占满了坑,并且值是 4,这个值越小代表越先被淘汰,当 E 进来时,看了下已经存在的四个里 A 是最小的,代表是最早存在并且最早被访问的,那就先淘汰它了,E 占领了 A 的位置,并设置值为 4,然后又访问 D 了,D 已经存在了,不过又被访问到了,得更新值为 5,然后是 F 进来了,这时 B 是最老的且最近未被访问,所以就淘汰它了。以上是一个 lru 的简要说明,但是 redis 没有严格按照这个去执行,理由跟前面过期策略一致,最严格的过期策略应该是每个 key 都有对应的定时器,当超时时马上就能清除,但是问题是这样的 cpu 消耗太大,所换来的内存效率不太值得,淘汰策略也是这样,类似于上图,要维护所有 key 的一个有序 lru 值,并且遍历将最小的淘汰,redis 采用的是抽样的形式,最初的实现方式是随机从 dict 抽取 5 个 key,淘汰一个 lru 最小的,这样子勉强能达到淘汰的目的,但是效果不是特别好,后面在 redis 3.0 开始,将随机抽取改成了维护一个 pool,pool 的大小默认是 16,每次放入的都是按 lru 值有序排列好,每一次放入的必须是 lru 小于 pool 中最小的 lru 才允许放入,直到放满,后面再有新的就会将大的踢出。redis 针对这个策略的改进做了一个实验,这里借用下图
首先背景是这图中的所有点都对应一个 redis 的 key,灰色部分加入后被顺序访问过一遍,然后又加入了绿色部分,那么按照理论的 lru 算法,应该是图左上中,浅灰色部分全都被淘汰,那么对比来看看图右上,左下和右下,左下表示 2.8 版本就是随机抽样 5 个 key,淘汰其中 lru 最小的一个,发现是灰色和浅灰色的都有被淘汰的,右下的 3.0 版本抽样数量不变的情况下,稍好一些,当 3.0 版本的抽样数量调整成 10 后,已经较为接近理论上的 lru 策略了,通过代码来简要分析下
typedef struct redisObject {
unsigned type:4;
unsigned encoding:4;
unsigned lru:LRU_BITS; /* LRU time (relative to global lru_clock) or
* LFU data (least significant 8 bits frequency
* and most significant 16 bits access time). */
int refcount;
void *ptr;
} robj;
对于 lru 策略来说,lru 字段记录的就是redisObj
的 LRU time,redis 在访问数据时,都会调用lookupKey
方法
/* Low level key lookup API, not actually called directly from commands
* implementations that should instead rely on lookupKeyRead(),
* lookupKeyWrite() and lookupKeyReadWithFlags(). */
robj *lookupKey(redisDb *db, robj *key, int flags) {
dictEntry *de = dictFind(db->dict,key->ptr);
if (de) {
robj *val = dictGetVal(de);
/* Update the access time for the ageing algorithm.
* Don't do it if we have a saving child, as this will trigger
* a copy on write madness. */
if (!hasActiveChildProcess() && !(flags & LOOKUP_NOTOUCH)){
if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
// 这个是后面一节的内容
updateLFU(val);
} else {
// 对于这个分支,访问时就会去更新 lru 值
val->lru = LRU_CLOCK();
}
}
return val;
} else {
return NULL;
}
}
/* This function is used to obtain the current LRU clock.
* If the current resolution is lower than the frequency we refresh the
* LRU clock (as it should be in production servers) we return the
* precomputed value, otherwise we need to resort to a system call. */
unsigned int LRU_CLOCK(void) {
unsigned int lruclock;
if (1000/server.hz <= LRU_CLOCK_RESOLUTION) {
// 如果服务器的频率server.hz大于 1 时就是用系统预设的 lruclock
lruclock = server.lruclock;
} else {
lruclock = getLRUClock();
}
return lruclock;
}
/* Return the LRU clock, based on the clock resolution. This is a time
* in a reduced-bits format that can be used to set and check the
* object->lru field of redisObject structures. */
unsigned int getLRUClock(void) {
return (mstime()/LRU_CLOCK_RESOLUTION) & LRU_CLOCK_MAX;
}
redis 处理命令是在这里processCommand
/* If this function gets called we already read a whole
* command, arguments are in the client argv/argc fields.
* processCommand() execute the command or prepare the
* server for a bulk read from the client.
*
* If C_OK is returned the client is still alive and valid and
* other operations can be performed by the caller. Otherwise
* if C_ERR is returned the client was destroyed (i.e. after QUIT). */
int processCommand(client *c) {
moduleCallCommandFilters(c);
/* Handle the maxmemory directive.
*
* Note that we do not want to reclaim memory if we are here re-entering
* the event loop since there is a busy Lua script running in timeout
* condition, to avoid mixing the propagation of scripts with the
* propagation of DELs due to eviction. */
if (server.maxmemory && !server.lua_timedout) {
int out_of_memory = freeMemoryIfNeededAndSafe() == C_ERR;
/* freeMemoryIfNeeded may flush slave output buffers. This may result
* into a slave, that may be the active client, to be freed. */
if (server.current_client == NULL) return C_ERR;
/* It was impossible to free enough memory, and the command the client
* is trying to execute is denied during OOM conditions or the client
* is in MULTI/EXEC context? Error. */
if (out_of_memory &&
(c->cmd->flags & CMD_DENYOOM ||
(c->flags & CLIENT_MULTI &&
c->cmd->proc != execCommand &&
c->cmd->proc != discardCommand)))
{
flagTransaction(c);
addReply(c, shared.oomerr);
return C_OK;
}
}
}
这里只摘了部分,当需要清理内存时就会调用, 然后调用了freeMemoryIfNeededAndSafe
/* This is a wrapper for freeMemoryIfNeeded() that only really calls the
* function if right now there are the conditions to do so safely:
*
* - There must be no script in timeout condition.
* - Nor we are loading data right now.
*
*/
int freeMemoryIfNeededAndSafe(void) {
if (server.lua_timedout || server.loading) return C_OK;
return freeMemoryIfNeeded();
}
/* This function is periodically called to see if there is memory to free
* according to the current "maxmemory" settings. In case we are over the
* memory limit, the function will try to free some memory to return back
* under the limit.
*
* The function returns C_OK if we are under the memory limit or if we
* were over the limit, but the attempt to free memory was successful.
* Otehrwise if we are over the memory limit, but not enough memory
* was freed to return back under the limit, the function returns C_ERR. */
int freeMemoryIfNeeded(void) {
int keys_freed = 0;
/* By default replicas should ignore maxmemory
* and just be masters exact copies. */
if (server.masterhost && server.repl_slave_ignore_maxmemory) return C_OK;
size_t mem_reported, mem_tofree, mem_freed;
mstime_t latency, eviction_latency;
long long delta;
int slaves = listLength(server.slaves);
/* When clients are paused the dataset should be static not just from the
* POV of clients not being able to write, but also from the POV of
* expires and evictions of keys not being performed. */
if (clientsArePaused()) return C_OK;
if (getMaxmemoryState(&mem_reported,NULL,&mem_tofree,NULL) == C_OK)
return C_OK;
mem_freed = 0;
if (server.maxmemory_policy == MAXMEMORY_NO_EVICTION)
goto cant_free; /* We need to free memory, but policy forbids. */
latencyStartMonitor(latency);
while (mem_freed < mem_tofree) {
int j, k, i;
static unsigned int next_db = 0;
sds bestkey = NULL;
int bestdbid;
redisDb *db;
dict *dict;
dictEntry *de;
if (server.maxmemory_policy & (MAXMEMORY_FLAG_LRU|MAXMEMORY_FLAG_LFU) ||
server.maxmemory_policy == MAXMEMORY_VOLATILE_TTL)
{
struct evictionPoolEntry *pool = EvictionPoolLRU;
while(bestkey == NULL) {
unsigned long total_keys = 0, keys;
/* We don't want to make local-db choices when expiring keys,
* so to start populate the eviction pool sampling keys from
* every DB. */
for (i = 0; i < server.dbnum; i++) {
db = server.db+i;
dict = (server.maxmemory_policy & MAXMEMORY_FLAG_ALLKEYS) ?
db->dict : db->expires;
if ((keys = dictSize(dict)) != 0) {
evictionPoolPopulate(i, dict, db->dict, pool);
total_keys += keys;
}
}
if (!total_keys) break; /* No keys to evict. */
/* Go backward from best to worst element to evict. */
for (k = EVPOOL_SIZE-1; k >= 0; k--) {
if (pool[k].key == NULL) continue;
bestdbid = pool[k].dbid;
if (server.maxmemory_policy & MAXMEMORY_FLAG_ALLKEYS) {
de = dictFind(server.db[pool[k].dbid].dict,
pool[k].key);
} else {
de = dictFind(server.db[pool[k].dbid].expires,
pool[k].key);
}
/* Remove the entry from the pool. */
if (pool[k].key != pool[k].cached)
sdsfree(pool[k].key);
pool[k].key = NULL;
pool[k].idle = 0;
/* If the key exists, is our pick. Otherwise it is
* a ghost and we need to try the next element. */
if (de) {
bestkey = dictGetKey(de);
break;
} else {
/* Ghost... Iterate again. */
}
}
}
}
/* volatile-random and allkeys-random policy */
else if (server.maxmemory_policy == MAXMEMORY_ALLKEYS_RANDOM ||
server.maxmemory_policy == MAXMEMORY_VOLATILE_RANDOM)
{
/* When evicting a random key, we try to evict a key for
* each DB, so we use the static 'next_db' variable to
* incrementally visit all DBs. */
for (i = 0; i < server.dbnum; i++) {
j = (++next_db) % server.dbnum;
db = server.db+j;
dict = (server.maxmemory_policy == MAXMEMORY_ALLKEYS_RANDOM) ?
db->dict : db->expires;
if (dictSize(dict) != 0) {
de = dictGetRandomKey(dict);
bestkey = dictGetKey(de);
bestdbid = j;
break;
}
}
}
/* Finally remove the selected key. */
if (bestkey) {
db = server.db+bestdbid;
robj *keyobj = createStringObject(bestkey,sdslen(bestkey));
propagateExpire(db,keyobj,server.lazyfree_lazy_eviction);
/* We compute the amount of memory freed by db*Delete() alone.
* It is possible that actually the memory needed to propagate
* the DEL in AOF and replication link is greater than the one
* we are freeing removing the key, but we can't account for
* that otherwise we would never exit the loop.
*
* AOF and Output buffer memory will be freed eventually so
* we only care about memory used by the key space. */
delta = (long long) zmalloc_used_memory();
latencyStartMonitor(eviction_latency);
if (server.lazyfree_lazy_eviction)
dbAsyncDelete(db,keyobj);
else
dbSyncDelete(db,keyobj);
latencyEndMonitor(eviction_latency);
latencyAddSampleIfNeeded("eviction-del",eviction_latency);
latencyRemoveNestedEvent(latency,eviction_latency);
delta -= (long long) zmalloc_used_memory();
mem_freed += delta;
server.stat_evictedkeys++;
notifyKeyspaceEvent(NOTIFY_EVICTED, "evicted",
keyobj, db->id);
decrRefCount(keyobj);
keys_freed++;
/* When the memory to free starts to be big enough, we may
* start spending so much time here that is impossible to
* deliver data to the slaves fast enough, so we force the
* transmission here inside the loop. */
if (slaves) flushSlavesOutputBuffers();
/* Normally our stop condition is the ability to release
* a fixed, pre-computed amount of memory. However when we
* are deleting objects in another thread, it's better to
* check, from time to time, if we already reached our target
* memory, since the "mem_freed" amount is computed only
* across the dbAsyncDelete() call, while the thread can
* release the memory all the time. */
if (server.lazyfree_lazy_eviction && !(keys_freed % 16)) {
if (getMaxmemoryState(NULL,NULL,NULL,NULL) == C_OK) {
/* Let's satisfy our stop condition. */
mem_freed = mem_tofree;
}
}
} else {
latencyEndMonitor(latency);
latencyAddSampleIfNeeded("eviction-cycle",latency);
goto cant_free; /* nothing to free... */
}
}
latencyEndMonitor(latency);
latencyAddSampleIfNeeded("eviction-cycle",latency);
return C_OK;
cant_free:
/* We are here if we are not able to reclaim memory. There is only one
* last thing we can try: check if the lazyfree thread has jobs in queue
* and wait... */
while(bioPendingJobsOfType(BIO_LAZY_FREE)) {
if (((mem_reported - zmalloc_used_memory()) + mem_freed) >= mem_tofree)
break;
usleep(1000);
}
return C_ERR;
}
这里就是根据具体策略去淘汰 key,首先是要往 pool 更新 key,更新 key 的方法是evictionPoolPopulate
void evictionPoolPopulate(int dbid, dict *sampledict, dict *keydict, struct evictionPoolEntry *pool) {
int j, k, count;
dictEntry *samples[server.maxmemory_samples];
count = dictGetSomeKeys(sampledict,samples,server.maxmemory_samples);
for (j = 0; j < count; j++) {
unsigned long long idle;
sds key;
robj *o;
dictEntry *de;
de = samples[j];
key = dictGetKey(de);
/* If the dictionary we are sampling from is not the main
* dictionary (but the expires one) we need to lookup the key
* again in the key dictionary to obtain the value object. */
if (server.maxmemory_policy != MAXMEMORY_VOLATILE_TTL) {
if (sampledict != keydict) de = dictFind(keydict, key);
o = dictGetVal(de);
}
/* Calculate the idle time according to the policy. This is called
* idle just because the code initially handled LRU, but is in fact
* just a score where an higher score means better candidate. */
if (server.maxmemory_policy & MAXMEMORY_FLAG_LRU) {
idle = estimateObjectIdleTime(o);
} else if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
/* When we use an LRU policy, we sort the keys by idle time
* so that we expire keys starting from greater idle time.
* However when the policy is an LFU one, we have a frequency
* estimation, and we want to evict keys with lower frequency
* first. So inside the pool we put objects using the inverted
* frequency subtracting the actual frequency to the maximum
* frequency of 255. */
idle = 255-LFUDecrAndReturn(o);
} else if (server.maxmemory_policy == MAXMEMORY_VOLATILE_TTL) {
/* In this case the sooner the expire the better. */
idle = ULLONG_MAX - (long)dictGetVal(de);
} else {
serverPanic("Unknown eviction policy in evictionPoolPopulate()");
}
/* Insert the element inside the pool.
* First, find the first empty bucket or the first populated
* bucket that has an idle time smaller than our idle time. */
k = 0;
while (k < EVPOOL_SIZE &&
pool[k].key &&
pool[k].idle < idle) k++;
if (k == 0 && pool[EVPOOL_SIZE-1].key != NULL) {
/* Can't insert if the element is < the worst element we have
* and there are no empty buckets. */
continue;
} else if (k < EVPOOL_SIZE && pool[k].key == NULL) {
/* Inserting into empty position. No setup needed before insert. */
} else {
/* Inserting in the middle. Now k points to the first element
* greater than the element to insert. */
if (pool[EVPOOL_SIZE-1].key == NULL) {
/* Free space on the right? Insert at k shifting
* all the elements from k to end to the right. */
/* Save SDS before overwriting. */
sds cached = pool[EVPOOL_SIZE-1].cached;
memmove(pool+k+1,pool+k,
sizeof(pool[0])*(EVPOOL_SIZE-k-1));
pool[k].cached = cached;
} else {
/* No free space on right? Insert at k-1 */
k--;
/* Shift all elements on the left of k (included) to the
* left, so we discard the element with smaller idle time. */
sds cached = pool[0].cached; /* Save SDS before overwriting. */
if (pool[0].key != pool[0].cached) sdsfree(pool[0].key);
memmove(pool,pool+1,sizeof(pool[0])*k);
pool[k].cached = cached;
}
}
/* Try to reuse the cached SDS string allocated in the pool entry,
* because allocating and deallocating this object is costly
* (according to the profiler, not my fantasy. Remember:
* premature optimizbla bla bla bla. */
int klen = sdslen(key);
if (klen > EVPOOL_CACHED_SDS_SIZE) {
pool[k].key = sdsdup(key);
} else {
memcpy(pool[k].cached,key,klen+1);
sdssetlen(pool[k].cached,klen);
pool[k].key = pool[k].cached;
}
pool[k].idle = idle;
pool[k].dbid = dbid;
}
}
Redis
随机选择maxmemory_samples
数量的 key,然后计算这些key
的空闲时间idle time
,当满足条件时(比 pool 中的某些键的空闲时间还大)就可以进pool
。pool
更新之后,就淘汰pool
中空闲时间最大的键。
estimateObjectIdleTime
用来计算 Redis 对象的空闲时间:
/* Given an object returns the min number of milliseconds the object was never
* requested, using an approximated LRU algorithm. */
unsigned long long estimateObjectIdleTime(robj *o) {
unsigned long long lruclock = LRU_CLOCK();
if (lruclock >= o->lru) {
return (lruclock - o->lru) * LRU_CLOCK_RESOLUTION;
} else {
return (lruclock + (LRU_CLOCK_MAX - o->lru)) *
LRU_CLOCK_RESOLUTION;
}
}
空闲时间第一种是 lurclock 大于对象的 lru,那么就是减一下乘以精度,因为 lruclock 有可能是已经预生成的,所以会可能走下面这个
LFU
上面介绍了 LRU 的算法,但是考虑一种场景
~~~~~A~~~~~A~~~~~A~~~~A~~~~~A~~~~~A~~|
~~B~~B~~B~~B~~B~~B~~B~~B~~B~~B~~B~~B~|
~~~~~~~~~~C~~~~~~~~~C~~~~~~~~~C~~~~~~|
~~~~~D~~~~~~~~~~D~~~~~~~~~D~~~~~~~~~D|
可以发现,当采用 lru 的淘汰策略的时候,D 是最新的,会被认为是最值得保留的,但是事实上还不如 A 跟 B,然后 antirez 大神就想到了 LFU (Least Frequently Used) 这个算法, 显然对于上面的四个 key 的访问频率,保留优先级应该是 B > A > C = D
那要怎么来实现这个 LFU 算法呢,其实像 LRU,理想的情况就是维护个链表,把最新访问的放到头上去,但是这个会影响访问速度,注意到前面代码的应该可以看到,redisObject 的 lru 字段其实是两用的,当策略是 LFU 时,这个字段就另作他用了,它的 24 位长度被分成两部分
16 bits 8 bits
+----------------+--------+
+ Last decr time | LOG_C |
+----------------+--------+
前 16 位字段是最后一次递减时间,因此 Redis 知道 上一次计数器递减,后 8 位是 计数器 counter。LFU 的主体策略就是当这个 key 被访问的次数越多频率越高他就越容易被保留下来,并且是最近被访问的频率越高。这其实有两个事情要做,一个是在访问的时候增加计数值,在一定长时间不访问时进行衰减,所以这里用了两个值,前 16 位记录上一次衰减的时间,后 8 位记录具体的计数值。Redis4.0 之后为 maxmemory_policy 淘汰策略添加了两个 LFU 模式:
volatile-lfu
:对有过期时间的 key 采用 LFU 淘汰策略
allkeys-lfu
:对全部 key 采用 LFU 淘汰策略
还有 2 个配置可以调整 LFU 算法:
lfu-log-factor 10
lfu-decay-time 1
lfu-log-factor
可以调整计数器 counter 的增长速度,lfu-log-factor 越大,counter 增长的越慢。
lfu-decay-time
是一个以分钟为单位的数值,可以调整 counter 的减少速度这里有个问题是 8 位大小够计么,访问一次加 1 的话的确不够,不过大神就是大神,才不会这么简单的加一。往下看代码
/* Low level key lookup API, not actually called directly from commands
* implementations that should instead rely on lookupKeyRead(),
* lookupKeyWrite() and lookupKeyReadWithFlags(). */
robj *lookupKey(redisDb *db, robj *key, int flags) {
dictEntry *de = dictFind(db->dict,key->ptr);
if (de) {
robj *val = dictGetVal(de);
/* Update the access time for the ageing algorithm.
* Don't do it if we have a saving child, as this will trigger
* a copy on write madness. */
if (!hasActiveChildProcess() && !(flags & LOOKUP_NOTOUCH)){
if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
// 当淘汰策略是 LFU 时,就会调用这个updateLFU
updateLFU(val);
} else {
val->lru = LRU_CLOCK();
}
}
return val;
} else {
return NULL;
}
}
updateLFU
这个其实个入口,调用了两个重要的方法
/* Update LFU when an object is accessed.
* Firstly, decrement the counter if the decrement time is reached.
* Then logarithmically increment the counter, and update the access time. */
void updateLFU(robj *val) {
unsigned long counter = LFUDecrAndReturn(val);
counter = LFULogIncr(counter);
val->lru = (LFUGetTimeInMinutes()<<8) | counter;
}
首先来看看LFUDecrAndReturn
,这个方法的作用是根据上一次衰减时间和系统配置的 lfu-decay-time
参数来确定需要将 counter 减去多少
/* If the object decrement time is reached decrement the LFU counter but
* do not update LFU fields of the object, we update the access time
* and counter in an explicit way when the object is really accessed.
* And we will times halve the counter according to the times of
* elapsed time than server.lfu_decay_time.
* Return the object frequency counter.
*
* This function is used in order to scan the dataset for the best object
* to fit: as we check for the candidate, we incrementally decrement the
* counter of the scanned objects if needed. */
unsigned long LFUDecrAndReturn(robj *o) {
// 右移 8 位,拿到上次衰减时间
unsigned long ldt = o->lru >> 8;
// 对 255 做与操作,拿到 counter 值
unsigned long counter = o->lru & 255;
// 根据lfu_decay_time来算出过了多少个衰减周期
unsigned long num_periods = server.lfu_decay_time ? LFUTimeElapsed(ldt) / server.lfu_decay_time : 0;
if (num_periods)
counter = (num_periods > counter) ? 0 : counter - num_periods;
return counter;
}
然后是加,调用了LFULogIncr
/* Logarithmically increment a counter. The greater is the current counter value
* the less likely is that it gets really implemented. Saturate it at 255. */
uint8_t LFULogIncr(uint8_t counter) {
// 最大值就是 255,到顶了就不加了
if (counter == 255) return 255;
// 生成个随机小数
double r = (double)rand()/RAND_MAX;
// 减去个基础值,LFU_INIT_VAL = 5,防止刚进来就被逐出
double baseval = counter - LFU_INIT_VAL;
// 如果是小于 0,
if (baseval < 0) baseval = 0;
// 如果 baseval 是 0,那么 p 就是 1了,后面 counter 直接加一,如果不是的话,得看系统参数lfu_log_factor,这个越大,除出来的 p 越小,那么 counter++的可能性也越小,这样子就把前面的疑问给解决了,不是直接+1 的
double p = 1.0/(baseval*server.lfu_log_factor+1);
if (r < p) counter++;
return counter;
}
大概的变化速度可以参考
+--------+------------+------------+------------+------------+------------+
| factor | 100 hits | 1000 hits | 100K hits | 1M hits | 10M hits |
+--------+------------+------------+------------+------------+------------+
| 0 | 104 | 255 | 255 | 255 | 255 |
+--------+------------+------------+------------+------------+------------+
| 1 | 18 | 49 | 255 | 255 | 255 |
+--------+------------+------------+------------+------------+------------+
| 10 | 10 | 18 | 142 | 255 | 255 |
+--------+------------+------------+------------+------------+------------+
| 100 | 8 | 11 | 49 | 143 | 255 |
+--------+------------+------------+------------+------------+------------+
简而言之就是 lfu_log_factor 越大变化的越慢
总结
总结一下,redis 实现了近似的 lru 淘汰策略,通过增加了淘汰 key 的池子(pool),并且增大每次抽样的 key 的数量来将淘汰效果更进一步地接近于 lru,这是 lru 策略,但是对于前面举的一个例子,其实 lru 并不能保证 key 的淘汰就如我们预期,所以在后期又引入了 lfu 的策略,lfu 的策略比较巧妙,复用了 redis 对象的 lru 字段,并且使用了 factor 参数来控制计数器递增的速度,防止 8 位的计数器太早溢出。
本文使用署名 4.0 国际 (CC BY 4.0)许可协议,欢迎转载、或重新修改使用,但需要注明来源。
本文作者: Nicksxs
创建时间: 2020-04-18
本文链接: redis精讲系列介绍八-淘汰策略
版权声明: 本文为 InfoQ 作者【Nick】的原创文章。
原文链接:【http://xie.infoq.cn/article/ecfe440ca4ec9cf1a3a10a337】。文章转载请联系作者。
Nick
还未添加个人签名 2017.12.22 加入
写代码的阿森 https://nicksxs.me https://nicksxs.com 也可以看我的博客
评论