MapReduce 高阶 分区、排序,Combine,Sh
发布于: 1 小时前
一、分区
1.1先分析一下具体的业务逻辑,确定大概有多少个分区
1.2首先书写一个类,它要继承org.apache.hadoop.mapreduce.Partitioner这个类
1.3重写public int getPartition这个方法,根据具体逻辑,读数据库或者配置返回相同的数字
1.4在main方法中设置Partioner的类,job.setPartitionerClass(DataPartitioner.class);
1.5设置Reducer的数量,job.setNumReduceTasks(6);
复制代码
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(DataCount.class);
job.setMapperClass(DCMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(DataInfo.class);
job.setReducerClass(DCReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(DataInfo.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.setPartitionerClass(DCPartitioner.class);
job.setNumReduceTasks(Integer.parseInt(args[2]));
job.waitForCompletion(true);
}
//Map
public static class DCMapper extends Mapper<LongWritable, Text, Text, DataInfo>{
private Text k = new Text();
@Override
protected void map(LongWritable key, Text value,
Mapper<LongWritable, Text, Text, DataInfo>.Context context)
throws IOException, InterruptedException {
String line = value.toString();
String[] fields = line.split("\t");
String tel = fields[1];
long up = Long.parseLong(fields[8]);
long down = Long.parseLong(fields[9]);
DataInfo dataInfo = new DataInfo(tel,up,down);
k.set(tel);
context.write(k, dataInfo);
}
}
public static class DCReducer extends Reducer<Text, DataInfo, Text, DataInfo>{
@Override
protected void reduce(Text key, Iterable<DataInfo> values,
Reducer<Text, DataInfo, Text, DataInfo>.Context context)
throws IOException, InterruptedException {
long up_sum = 0;
long down_sum = 0;
for(DataInfo d : values){
up_sum += d.getUpPayLoad();
down_sum += d.getDownPayLoad();
}
DataInfo dataInfo = new DataInfo("",up_sum,down_sum);
context.write(key, dataInfo);
}
}
public static class DCPartitioner extends Partitioner<Text, DataInfo>{
private static Map<String,Integer> provider = new HashMap<String,Integer>();
static{
provider.put("138", 1);
provider.put("139", 1);
provider.put("152", 2);
provider.put("153", 2);
provider.put("182", 3);
provider.put("183", 3);
}
@Override
public int getPartition(Text key, DataInfo value, int numPartitions) {
//向数据库或配置信息 读写
String tel_sub = key.toString().substring(0,3);
Integer count = provider.get(tel_sub);
if(count == null){
count = 0;
}
return count;
}
}
复制代码
二、排序
排序 MR 默认是按 key2 进行排序的,如果想自定义排序规则,被排序的对象要实 WritableComparable 接口,在 compareTo 方法中实现排序规则,然后将这个对象当做 k2,即可完成排序
public class InfoBean implements WritableComparable<InfoBean>{
private String account;
private double income;
private double expenses;
private double surplus;
public void set(String account,double income,double expenses){
this.account = account;
this.income = income;
this.expenses = expenses;
this.surplus = income - expenses;
}
@Override
public void write(DataOutput out) throws IOException {
out.writeUTF(account);
out.writeDouble(income);
out.writeDouble(expenses);
out.writeDouble(surplus);
}
@Override
public void readFields(DataInput in) throws IOException {
this.account = in.readUTF();
this.income = in.readDouble();
this.expenses = in.readDouble();
this.surplus = in.readDouble();
}
@Override
public int compareTo(InfoBean o) {
if(this.income == o.getIncome()){
return this.expenses > o.getExpenses() ? 1 : -1;
}
return this.income > o.getIncome() ? 1 : -1;
}
@Override
public String toString() {
return income + "\t" + expenses + "\t" + surplus;
}
public String getAccount() {
return account;
}
public void setAccount(String account) {
this.account = account;
}
public double getIncome() {
return income;
}
public void setIncome(double income) {
this.income = income;
}
public double getExpenses() {
return expenses;
}
public void setExpenses(double expenses) {
this.expenses = expenses;
}
public double getSurplus() {
return surplus;
}
public void setSurplus(double surplus) {
this.surplus = surplus;
}
}
public static class SortMapper extends Mapper<LongWritable, Text, InfoBean, NullWritable>{
private InfoBean k = new InfoBean();
@Override
protected void map(
LongWritable key,
Text value,
Mapper<LongWritable, Text, InfoBean, NullWritable>.Context context)
throws IOException, InterruptedException {
String line = value.toString();
String[] fields = line.split("\t");
k.set(fields[0], Double.parseDouble(fields[1]), Double.parseDouble(fields[2]));
context.write(k, NullWritable.get());
}
}
public static class SortReducer extends Reducer<InfoBean, NullWritable, Text, InfoBean>{
private Text k = new Text();
@Override
protected void reduce(InfoBean key, Iterable<NullWritable> values,
Reducer<InfoBean, NullWritable, Text, InfoBean>.Context context)
throws IOException, InterruptedException {
k.set(key.getAccount());
context.write(k, key);
}
}
复制代码
三、Combine
combiner 的作用就是在 map 端对输出先做一次合并,以减少传输到 reducer 的数据量。
job.setCombinerClass(WCReducer.class);
//提交任务
job.waitForCompletion(true);
复制代码
划线
评论
复制
发布于: 1 小时前阅读数: 2
binfirechen
关注
还未添加个人签名 2020.11.27 加入
85普通大学生的IT之路
评论