Android 性能优化:看完这篇文章, 至少解决 APP 中 90 % 的内存异常问题
随着程序的运行,内存中的实例对象、变量等占据的内存越来越多,如果不及时进行回收,会降低程序运行效率,甚至引发系统异常。
目前虚拟机基本都是采用可达性分析算法,为什么不采用引用计数算法呢?下面就说说引用计数法是如果统计所有对象的引用计数的,再对比可达性分析算法是如何解决引用计数算法的不足。下面就来看下这 2 个算法:
[](
)引用计数算法
每个对象有一个引用计数器,当对象被引用一次则计数器加一,当对象引用一次失效一次则计数器减一,对于计数器为 0 的时候就意味着是垃圾了,可以被 GC 回收。
下面通过一段代码来实际看下
public class GCTest {
private Object instace = null;
public static void onGCtest() {
//step 1
GCTest gcTest1 = new GCTest();
//step 2
GCTest gcTest2 = new GCTest();
//step 3
gcTest1.instace = gcTest2;
//step 4
gcTest2.instace = gcTest1;
//step 5
gcTest1 = null;
//step 6
gcTest2 = null;
}
public static void main(String[] arg) {
onGCtest();
}
}
分析代码
//step 1 gcTest1 引用 + 1 = 1
//step 2 gcTest2 引用 + 1 = 1
//step 3 gcTest1 引用 + 1 = 2
//step 4 gcTest2 引用 + 1 = 2
//step 5 gcTest1 引用 - 1 = 1
//step 6 gcTest2 引用 - 1 = 1
很明显现在 2 个对象都不能用了都为 null 了,但是 GC 确不能回收它们,因为它们本身的引用计数不为 0 。不能满足被回收的条件,尽管调用 System.gc() 也还是不能得到回收, 这就造成了 内存泄漏 。当然,现在虚拟机基本上都不采用此方式。
[](
)可达性分析算法
从 GC Roots 作为起点开始搜索,那么整个连通图中额对象边都是活对象,对于 GC Roots 无法到达的对象便成了垃圾回收的对象,随时可能被 GC 回收。
可以作为 GC Roots 的对象
虚拟机栈正在运行使用的引用
静态属性 常量
JNI 引用的对象
GC 是需要 2 次扫描才回收对象,所以我们可以使用 finalize 去救活丢失的引用
@Override
protected void finalize() throws Throwable {
super.finalize();
instace = this;
}
到了这里,相信大家已经能够弄明白这 2 个算法的区别了吧?反正对于对象之间循环引用的情况,引用计数算法无法回收这 2 个对象,而可达性是从 GC Roots 开始搜索,所以能够正确的回收。
[](
)不同引用类型的回收状态
[](
)强引用
Object strongReference = new Object()
如果一个对象具有强引用,那垃圾回收器绝不会回收它,当内存空间不足, Java 虚拟机宁愿抛出 OOM 错误,使程序异常 Crash ,也不会靠随意回收具有强引用的对象来解决内存不足的问题.如果强引用对象不再使用时,需要弱化从而使 GC 能够回收,需要:
strongReference = null; //等 GC 来回收
还有一种情况,如果:
public void onStrongReference(){
Object strongReference = new Object()
}
在 onStrongReference() 内部有一个强引用,这个引用保存在 java 栈 中,而真正的引用内容 (Object)保存在 java 堆中。当这个方法运行完成后,就会退出方法栈,则引用对象的引用数为 0 ,这个对象会被回收。
但是如果 mStrongReference 引用是全局时,就需要在不用这个对象时赋值为 null ,因为 强引用 不会被 GC 回收。
[](
)软引用 (SoftReference)
如果一个对象只具有软引用,则内存空间足够,垃圾回收器就不会回收它;如果内存空间不足了,就会回收这些对象的内存,只要垃圾回收器没有回收它,该对象就可以被程序使用。软引用可用来实现内存敏感的高速缓存。
软引用可以和一个引用队列(ReferenceQueue)联合使用,如果软引用所引用的对象被垃圾回收器回收, java 虚拟机就会把这个软引用加入到与之关联的引用队列中。
注意: 软引用对象是在 jvm 内存不够的时候才会被回收,我们调用 System.gc() 方法只是起通知作用, JVM 什么时候扫描回收对象是 JVM 自己的状态决定的。就算扫描到了 str 这个对象也不会回收,只有内存不足才会回收。
[](
)弱引用 (WeakReference)
弱引用与软引用的区别在于: 只具有弱引用的对象拥有更短暂的生命周期。在垃圾回收器线程扫描它所管辖的内存区域的过程中,一旦发现了只具有弱引用的对象,不管当前内存空间足够与否,都会回收它的内存。不过由于垃圾回收器是一个优先级很低的线程,因此不一定会很快发现那些只具有弱引用的对象。
弱引用可以和一个引用队列联合使用,如果弱引用所引用的对象被垃圾回收,Java 虚拟机就会把这个弱引用加入到与之关联的引用队列中。
可见 weakReference 对象的生命周期基本由 GC 决定,一旦 GC 线程发现了弱引用就标记下来,第二次扫描到就直接回收了。
注意这里的 referenceQueuee 是装的被回收的对象。
[](
)虚引用 (PhantomReference)
@Test
public void onPhantomReference()throws InterruptedException{
String str = new String("123456");
ReferenceQueue queue = new ReferenceQueue();
// 创建虚引用,要求必须与一个引用队列关联
PhantomReference pr = new PhantomReference(str, queue);
System.out.println("PhantomReference:" + pr.get());
System.out.printf("ReferenceQueue:" + queue.poll());
}
虚引用顾名思义,就是形同虚设,与其他几种引用都不同,虚引用并不会决定对象的生命周期。如果一个对象仅持有虚引用,那么它就和没有任何引用一样,在任何时候都可能被垃圾回收器回收。
虚引用主要用来跟踪对象被垃圾回收器回收的活动。虚引用与软引用和弱引用的一个区别在于: 虚引用必须和引用队列 (ReferenceQueue) 联合使用。当垃圾回收器准备回收一个对象时,如果发现它还有虚引用,就会在回收对象的内存之前,把这个虚引用加入到与之关联的引用队列中。
[](
)总结
| 引用类型 | 调用方式 | GC | 是否内存泄漏 |
| --- | --- | --- | --- |
| 强引用 | 直接调用 | 不回收 | 是 |
| 软引用 | .get() | 视内存情况回收 | 否 |
| 弱引用 | .get() | 回收 | 不可能 |
| 虚引用 | null | 任何时候都可能被回收,相当于没有引用一样 | 否 |
[](
)分析内存常用工具
工具很多,掌握原理方法,工具随意挑选使用。
[](
)top/procrank
[](
)meinfo
[](
)Procstats
[](
)DDMS
[](
)MAT
[](
)Finder - Activity
[](
)LeakCanary
[](
)LeakInspector
[](
)内存泄漏
产生的原因: 一个长生命周期的对象持有一个短生命周期对象的引用,通俗点讲就是该回收的对象,因为引用问题没有被回收,最终会产生 OOM。
下面我们来利用 Profile 来检查项目是否有内存泄漏
[](
)怎么利用 profile 来查看项目中是否有内存泄漏
在 AS 中项目以 profile 运行
在 MEMORY 界面中选择要分析的一段内存,右键 export
Allocations: 动态分配对象个数
Deallocation: 解除分配的对象个数
Total count: 对象的总数
Shalow Size: 对象本身占用的内存大小
Retained Size: GC 回收能收走的内存大小
转换 profile 文件格式
将 export 导出的 dprof 文件转换为 Mat 的 dprof 文件
cd /d 进入到 Android sdk/platform-tools/hprof-conv.exe
//转换命令 hprof-conv -z src des
D:\Android\AndroidDeveloper-sdk\android-sdk-windows\platform-tools>hprof-conv -z D:\temp_\temp_6.hprof D:\temp_\memory6.hprof
[下载 Mat 工具](
)
打开 MemoryAnalyzer.exe 点击左上角 File 菜单中的 Open Heap Dupm
查看内存泄漏中的 GC Roots 强引用
![](https://imgconvert.csdnimg.cn/aHR0cHM6Ly91cGxvYWQtaW1hZ2V
zLmppYW5zaHUuaW8vdXBsb2FkX2ltYWdlcy8xOTk1NjEyNy04MmEyNGMxNWZmOTQzZWI3LnBuZw?x-oss-process=image/format,png)
这里我们得知是一个 ilsLoginListener 引用了 LoginView,我们来看下代码最后怎么解决的。
代码中我们找到了 LoginView 这个类,发现是一个单例中的回调引起的内存泄漏,下面怎么解决勒,请看第七小点。
2 种解决单例中的内存泄漏
将引用置为 null
/**
销毁监听
*/
public void unRemoveRegisterListener(){
mMessageController.unBindListener();
}
public void unBindListener(){
if (listener != null){
listener = null;
}
}
使用弱引用
//将监听器放入弱引用中
WeakReference<IBinderServiceListener> listenerWeakReference = new WeakReference<>(listener);
//从弱引用中取出回调
listenerWeakReference.get();
通过第七小点就能完美的解决单例中回调引起的内存泄漏。
[](
)Android 中常见的内存泄漏经典案例及解决方法
单例
示例 :
public class AppManager {
private static AppManager sInstance;
private CallBack mCallBack;
private Context mContext;
private AppManager(Context context) {
this.mContext = context;
}
public static AppManager getInstance(Context context) {
if (sInstance == null) {
sInstance = new AppManager(context);
}
return sInstance;
}
public void addCallBack(CallBack call){
mCallBack = call;
}
}
通过上面的单列,如果 context 传入的是 Activity , Service 的 this,那么就会导致内存泄漏。
以 Activity 为例,当 Activity 调用 getInstance 传入 this ,那么 sInstance 就会持有 Activity 的引用,当 Activity 需要关闭的时候需要 回收的时候,发现 sInstance 还持有 没有用的 Activity 引用,导致 Activity 无法被 GC 回收,就会造成内存泄漏
addCallBack(CallBack call) 这样写看起来是没有毛病的。但是当这样调用在看一下勒。
//在 Activity 中实现单例的回调
AppManager.getInstance(getAppcationContext()).addCallBack(new CallBack(){
@Override
public void onStart(){
}
});
这里的 new CallBack() 匿名内部类 默认持有外部的引用,造成 CallBack 释放不了,那么怎么解决了,请看下面解决方法
解决方法:
getInstance(Context context) context 都传入 Appcation 级别的 Context,或者实在是需要传入 Activity 的引用就用 WeakReference 这种形式。
匿名内部类建议大家单独写一个文件或者
public void addCallBack(CallBack call){
WeakReference<CallBack> mCallBack= new WeakReference<CallBack>(call);
}
Handler
示例:
//在 Activity 中实现 Handler
class MyHandler extends Handler{
private Activity m;
public MyHandler(Activity activity){
m=activity;
}
// class.....
}
这里的 MyHandler 持有 activity 的引用,当 Activity 销毁的时候,导致 GC 不会回收造成 内存泄漏。
解决方法:
1.使用静态内部类 + 弱引用
2.在 Activity onDestoty() 中处理 removeCallbacksAndMessages()
@Override
protected void onDestroy() {
super.onDestroy();
if(null != handler){
handler.removeCallbacksAndMessages(null);
handler = null;
}
}
静态变量
示例:
public class MainActivity extends AppCompatActivity {
private static Police sPolice;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
if (sPolice != null) {
sPolice = new Police(this);
}
}
}
class Police {
public Police(Activity activity) {
}
}
这里 Police 持有 activity 的引用,会造成 activity 得不到释放,导致内存泄漏。
解决方法:
//1. sPolice 在 onDestory()中 sPolice = null;
//2. 在 Police 构造函数中 将强引用 to 弱引用;
非静态内部类
参考 第二点 Handler 的处理方式
匿名内部类
示例:
public class MainActivity extends AppCompatActivity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
new Thread(){
@Override
public void run() {
super.run();
}
};
}
}
很多初学者都会像上面这样新建线程和异步任务,殊不知这样的写法非常地不友好,这种方式新建的子线程Thread
和AsyncTask
都是匿名内部类对象,默认就隐式的持有外部Activity
的引用,导致Activity
内存泄露。
解决方法:
//静态内部类 + 弱引用
//单独写一个文件 + onDestory = null;
未取消注册或回调
示例:
public class MainActivity extends AppCompatActivity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
registerReceiver(mReceiver, new IntentFilter());
}
private BroadcastReceiver mReceiver = new BroadcastReceiver() {
@Override
public void onReceive(Context context, Intent intent) {
// TODO ------
}
};
}
在注册观察则模式的时候,如果不及时取消也会造成内存泄露。比如使用Retrofit + RxJava
注册网络请求的观察者回调,同样作为匿名内部类持有外部引用,所以需要记得在不用或者销毁的时候取消注册。
解决方法:
//Activity 中实现 onDestory()反注册广播得到释放
@Override
protected void onDestroy() {
super.onDestroy();
this.unregisterReceiver(mReceiver);
}
定时任务
示例:
public class MainActivity extends AppCompatActivity {
/*模拟计数/
private int mCount = 1;
private Timer mTimer;
private TimerTask mTimerTask;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
init();
mTimer.schedule(mTimerTask, 1000, 1000);
}
private void init() {
mTimer = new Timer();
mTimerTask = new TimerTask() {
@Override
public void run() {
MainActivity.this.runOnUiThread(new Runnable() {
@Override
public void run() {
addCount();
}
});
}
};
}
private void addCount() {
mCount += 1;
}
评论