微博评论高性能高可用方案设计
一、背景
【用户量】
2020.9 月月活 5.11 亿,日活 2.24 亿(参考《微博 2020 用户发展报告》)。
【关键行为】
发微博;
看微博;
评论微博
二、性能估算
【发微博】
考虑到微博是一个看得多发的少的业务,假设平均每天每人发 1 条微博(只考虑文字微博),则微博每天的发送量约为 2.5 亿条。
大部分的人发微博集中在早上 8:00~9:00 点,中午 12:00~13:00,晚上 20:00~22:00,假设这几个时间段发微博总量占比为
60%,则这 4 个小时的平均发微博的 TPS 计算如下:
2.5 亿 * 60% / (4 * 3600) ≈ 10 K/s。
【看微博】
由于绝大部分微博用户看微博的对象是大 V 和明星,因此我们假设平均一条微博观看人数有 100 次,则观看微博的次数为:
2.5 亿 * 100 = 250 亿。
大部分人看微博的时间段和发微博的时间段基本重合,因此看微博的平均 QPS 计算如下:
250 亿 * 60% / (4*3600) = 1000K/s
【评论微博】
假设看微博的人中有 1/10 人进行评论,那么 TPS 计算如下:
1000k/s / 10 = 100k/s
三、高性能计算架构
【业务特性分析】
评论微博是一个典型的写操作,因此不能用缓存,可以用负载均衡。
【架构分析】
用户量过亿,应该要用多级负载均衡架构,覆盖 DNS -> F5 -> Nginx -> 网关的多级负载均衡。
【架构设计】
负载均衡算法选择
评论微博的时候依赖登录状态,登录状态一般都是保存在分布式缓存中的,因此评论微博的时候,将请求发送给任意服务器都可以,这里选择“轮询”或者“随机”算法。
业务服务器数量估算
评论微博涉及几个关键的处理:内容审核(依赖审核系统)、数据写入存储(依赖存储系统)、数据写入缓存(依赖缓存系统),因此按照一个服务每秒处理 500 来估算,完成 100K/s 的 TPS,需要 200 台服务器,加上 10%预留量,20 台服务器差不多了。
四、热点事件的高可用计算架构
【架构设计分析】
评论微博
评论的微博实时性要求不高,可以考虑对“评论微博”限流,考虑用“漏桶算法”。
评论