通过 SingleFlight 模式学习 Go 并发编程
最近接触到微服务框架go-zero
,翻看了整个框架代码,发现结构清晰、代码简洁,所以决定阅读源码学习下,本次阅读的源码位于core/syncx/singleflight.go
。
在go-zero
中SingleFlight
的作用是:将并发请求合并成一个请求,以减少对下层服务的压力。
应用场景
查询缓存时,合并请求,提升服务性能。假设有一个 IP 查询的服务,每次用户请求先在缓存中查询一个 IP 的归属地,如果缓存中有结果则直接返回,不存在则进行 IP 解析操作。
如上图所示,n 个用户请求查询同一个 IP(8.8.8.8)就会对应 n 个 Redis 的查询,在高并发场景下,如果能将 n 个 Redis 查询合并成一个 Redis 查询,那么性能肯定会提升很多,而 SingleFlight
就是用来实现请求合并的,效果如下:
防止缓存击穿。
缓存击穿问题是指:在高并发的场景中,大量的请求同时查询一个 key ,如果这个 key 正好过期失效了,就会导致大量的请求都打到数据库,导致数据库的连接增多,负载上升。
通过SingleFlight
可以将对同一个 Key 的并发请求进行合并,只让其中一个请求到数据库进行查询,其他请求共享同一个结果,可以很大程度提升并发能力。
应用方式
直接上代码:
以上代码,模拟 10 个协程请求 Redis 获取一个 key 的内容,代码很简单,就是执行Do()
方法。其中,接收两个参数,第一个参数是获取资源的标识,可以是 redis 中缓存的 key,第二个参数就是一个匿名函数,封装好要做的业务逻辑。最终获得的结果如下:
从上看出,10 个协程都获得了同一个结果,也就是只有一个协程真正执行了rand.Int()
获取了随机数,其他的协程都共享了这个结果。
源码解析
先看代码结构:
然后看最核心的Do方法
做了什么事情:
代码很简洁,利用g.createCall(key)
对 key 发起 call 请求(其实就是做一件事情),如果此时已经有其他协程已经在发起 call 请求就阻塞住(done 为 true 的情况),等待拿到结果后直接返回。如果 done 是 false,说明当前协程是第一个发起 call 的协程,那么就执行g.makeCall(c, key, fn)
真正地发起 call 请求(此后的其他协程就阻塞在了g.createCall(key)
)。
从上图可知,其实关键就两步:
判断是第一个请求的协程(利用 map)
阻塞住其他所有协程(利用 sync.WaitGroup)
来看下g.createCall(key)
如何实现的:
先看第一步:判断是第一个请求的协程(利用 map)
此处判断 map 中的 key 是否存在,如果已经存在,说明已经有其他协程在请求了,当前这个协程只需要等待,等待是利用了sync.WaitGroup
的Wait()
方法实现的,此处还是很巧妙的。要注意的是,map 在 Go 中是非并发安全的,所以需要加锁。
再看第二步:阻塞住其他所有协程(利用 sync.WaitGroup)
因为是第一个发起 call 的协程,所以需要 new 这个 call,然后将wg.Add(1)
,这样就对应了上面的wg.Wait()
,阻塞剩下的协程。随后将 new 的 call 放入 map 中,注意此时只是完成了初始化,并没有真正去执行 call 请求,真正的处理逻辑在 g.makeCall(c, key, fn)
中。
这个方法中做的事情很简单,就是执行了传递的匿名函数fn()
(也就是真正 call 请求要做的事情)。最后处理收尾的事情(通过 defer),也是分成两步:
删除 map 中的 key,使得下次发起请求可以获取新的值。
调用
wg.Done()
,让之前阻塞的协程全部获得结果并返回。
至此,SingleFlight
的核心代码就解析完毕了,虽然代码不长,但是这个思想还是很棒的,可以在实际工作中借鉴。
总结
map 非并发安全,记得加锁。
巧用 sync.WaitGroup 去完成
需要阻塞控制协程
的应用场景。通过匿名函数 fn 去封装传递具体业务逻辑,在调用 fn 的上层函数中去完成统一的逻辑处理。
项目地址
https://github.com/zeromicro/go-zero
欢迎使用 go-zero
并 star 支持我们!
版权声明: 本文为 InfoQ 作者【万俊峰Kevin】的原创文章。
原文链接:【http://xie.infoq.cn/article/c60e3d023f5d89b43d93ab43c】。
本文遵守【CC-BY 4.0】协议,转载请保留原文出处及本版权声明。
评论