图计算的应用
医疗行业的应用
图计算的出现使得对病人的智能诊断成为可能。
对病人开具处方需要依据病人的病情特征与以往的健康情况,以及药物的相关情况。过去的医疗大多依赖于医生的个人经验与病人的自我描述,传统的数据处理系统无法一次性调出多个与病人情况、保险情况、药物情况相关的数据库——挑战在于信息必须由多个在线资源拼凑而成,包括列出疾病和治疗的电子病历、医疗保险或其他跟踪医疗服务的数据库、描述药物的数据库,在某些情况下,还有跟踪临床试验的独立数据库。
从不同来源收集信息,然后分析信息,以揭示用其他方法发现不了的趋势。在利用大数据发掘价值的所有行业中,医疗行业有可能实现最大的回报。凭借大数据,医疗服务提供商不仅可以知道如何提高盈利水平和经营效率,还能找到直接增进人类福祉的趋势。
金融行业的应用
在金融实体模型中,存在着许许多多不同类型的关系,以及数十亿的结点和边。有些是相对静态的,如企业之间的股权关系、个人客户之间的亲属关系,有些则是不断地在动态变化,如转账关系、贸易关系等等。这些静态或者动态的关系背后,隐藏着很多以前我们不知道的信息。
之前,我们在对某个金融业务场景进行数据分析和挖掘过程中,通常都是从个体(如企业、个人、账户等)本身的角度出发,去分析个体与个体之间的差异和不同,比如,人、车、手机号等实体对象可简单抽象为一个个实体点,两个实体之间的“关系”用一条线来表示,很少从个体之间的关联关系角度去分析,因此会忽略很多原本的客观存在,也就更无法准确达到该业务场景的数据分析和挖掘目标。而图计算和基于图的认知分析正是在这方面弥补了传统分析技术的不足,用高度抽象的数据表达方式最大限度地还原真实世界,从而在大量的关联关系中挖掘数据的价值。在金融行业的数据中,存在着大量的实体和关系,将其建立连接,可以突破传统的计算模式,帮助我们从金融的本质角度来看这个问题,从实体和实体之间的经济行为关系出发来分析问题。
互联网行业的应用
目前大数据在互联网公司主要应用在广告、报表、推荐系统等业务上。在广告业务方面需要大数据做应用分析、效果分析、定向优化等,在推荐系统方面则需要大数据优化相关排名、个性化推荐以及热点点击分析等。图计算的出现满足了这些计算量大、效率要求高的应用场景的需求。
图计算模型在大数据公司,尤其是 IT 公司是非常流行的一大模型,它是很多实际问题最直接的解决方法。近几年,随着数据的多样化,数据量的大幅度提升和算力的突破性进展,超大规模图计算在大数据公司发挥着越来越重要的作用,尤其是以深度学习和图计算结合的大规模图表征为代表的系列算法。
图计算的发展和应用有井喷之势,各大公司也相应推出图计算平台,例如 Google Pregel、Facebook Graph、阿里 GraphScope 等。
评论