写点什么

MySql 索引

作者:秋名山码民
  • 2022 年 6 月 12 日
  • 本文字数:3811 字

    阅读完需:约 13 分钟

索引

索引是帮助 MySQL 高效获取数据数据结构(有序)。在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查询算法,这种数据结构就是索引。


优缺点:


优点:


  • 提高数据检索效率,降低数据库的 IO 成本

  • 通过索引列对数据进行排序,降低数据排序的成本,降低 CPU 的消耗


缺点:


  • 索引列也是要占用空间的

  • 索引大大提高了查询效率,但降低了更新的速度,比如 INSERT、UPDATE、DELETE

索引结构


B-Tree

二叉树


二叉树的缺点可以用红黑树来解决:


红黑树


红黑树也存在大数据量情况下,层级较深,检索速度慢的问题。


为了解决上述问题,可以使用 B-Tree 结构。B-Tree (多路平衡查找树) 以一棵最大度数(max-degree,指一个节点的子节点个数)为 5(5 阶)的 b-tree 为例(每个节点最多存储 4 个 key,5 个指针)


B-Tree结构


B-Tree 的数据插入过程动画参照:https://www.bilibili.com/video/BV1Kr4y1i7ru?p=68 演示地址:https://www.cs.usfca.edu/~galles/visualization/BTree.html

B+Tree

结构图:


B+Tree结构图


演示地址:https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html


与 B-Tree 的区别:


  • 所有的数据都会出现在叶子节点

  • 叶子节点形成一个单向链表


MySQL 索引数据结构对经典的 B+Tree 进行了优化。在原 B+Tree 的基础上,增加一个指向相邻叶子节点的链表指针,就形成了带有顺序指针的 B+Tree,提高区间访问的性能。


MySQL B+Tree 结构图

Hash

哈希索引就是采用一定的 hash 算法,将键值换算成新的 hash 值,映射到对应的槽位上,然后存储在 hash 表中。如果两个(或多个)键值,映射到一个相同的槽位上,他们就产生了 hash 冲突(也称为 hash 碰撞),可以通过链表来解决。


Hash索引原理图


特点:


  • Hash 索引只能用于对等比较(=、in),不支持范围查询(betwwn、>、<、...)

  • 无法利用索引完成排序操作

  • 查询效率高,通常只需要一次检索就可以了,效率通常要高于 B+Tree 索引


存储引擎支持:


  • Memory

  • InnoDB: 具有自适应 hash 功能,hash 索引是存储引擎根据 B+Tree 索引在指定条件下自动构建的

面试题

  1. 为什么 InnoDB 存储引擎选择使用 B+Tree 索引结构?


  • 相对于二叉树,层级更少,搜索效率高

  • 对于 B-Tree,无论是叶子节点还是非叶子节点,都会保存数据,这样导致一页中存储的键值减少,指针也跟着减少,要同样保存大量数据,只能增加树的高度,导致性能降低

  • 相对于 Hash 索引,B+Tree 支持范围匹配及排序操作

索引分类


在 InnoDB 存储引擎中,根据索引的存储形式,又可以分为以下两种:



演示图:


大致原理


演示图


聚集索引选取规则:


  • 如果存在主键,主键索引就是聚集索引

  • 如果不存在主键,将使用第一个唯一(UNIQUE)索引作为聚集索引

  • 如果表没有主键或没有合适的唯一索引,则 InnoDB 会自动生成一个 rowid 作为隐藏的聚集索引

思考题

1. 以下 SQL 语句,哪个执行效率高?为什么?


select * from user where id = 10;select * from user where name = 'Arm';-- 备注:id为主键,name字段创建的有索引
复制代码


答:第一条语句,因为第二条需要回表查询,相当于两个步骤。


2. InnoDB 主键索引的 B+Tree 高度为多少?


答:假设一行数据大小为 1k,一页中可以存储 16 行这样的数据。InnoDB 的指针占用 6 个字节的空间,主键假设为 bigint,占用字节数为 8.可得公式:n * 8 + (n + 1) * 6 = 16 * 1024,其中 8 表示 bigint 占用的字节数,n 表示当前节点存储的 key 的数量,(n + 1) 表示指针数量(比 key 多一个)。算出 n 约为 1170。


如果树的高度为 2,那么他能存储的数据量大概为:1171 * 16 = 18736;如果树的高度为 3,那么他能存储的数据量大概为:1171 * 1171 * 16 = 21939856


另外,如果有成千上万的数据,那么就要考虑分表,涉及运维篇知识。

语法

创建索引:CREATE [ UNIQUE | FULLTEXT ] INDEX index_name ON table_name (index_col_name, ...);如果不加 CREATE 后面不加索引类型参数,则创建的是常规索引


查看索引:SHOW INDEX FROM table_name;


删除索引:DROP INDEX index_name ON table_name;


案例:


-- name字段为姓名字段,该字段的值可能会重复,为该字段创建索引create index idx_user_name on tb_user(name);-- phone手机号字段的值非空,且唯一,为该字段创建唯一索引create unique index idx_user_phone on tb_user (phone);-- 为profession, age, status创建联合索引create index idx_user_pro_age_stat on tb_user(profession, age, status);-- 为email建立合适的索引来提升查询效率create index idx_user_email on tb_user(email);
-- 删除索引drop index idx_user_email on tb_user;
复制代码

使用规则

最左前缀法则

如果索引关联了多列(联合索引),要遵守最左前缀法则,最左前缀法则指的是查询从索引的最左列开始,并且不跳过索引中的列。如果跳跃某一列,索引将部分失效(后面的字段索引失效)。


联合索引中,出现范围查询(<, >),范围查询右侧的列索引失效。可以用>=或者<=来规避索引失效问题。

索引失效情况

  1. 在索引列上进行运算操作,索引将失效。如:explain select * from tb_user where substring(phone, 10, 2) = '15';

  2. 字符串类型字段使用时,不加引号,索引将失效。如:explain select * from tb_user where phone = 17799990015;,此处 phone 的值没有加引号

  3. 模糊查询中,如果仅仅是尾部模糊匹配,索引不会是失效;如果是头部模糊匹配,索引失效。如:explain select * from tb_user where profession like '%工程';,前后都有 % 也会失效。

  4. 用 or 分割开的条件,如果 or 其中一个条件的列没有索引,那么涉及的索引都不会被用到。

  5. 如果 MySQL 评估使用索引比全表更慢,则不使用索引。

SQL 提示

是优化数据库的一个重要手段,简单来说,就是在 SQL 语句中加入一些人为的提示来达到优化操作的目的。


例如,使用索引:explain select * from tb_user use index(idx_user_pro) where profession="软件工程";不使用哪个索引:explain select * from tb_user ignore index(idx_user_pro) where profession="软件工程";必须使用哪个索引:explain select * from tb_user force index(idx_user_pro) where profession="软件工程";


use 是建议,实际使用哪个索引 MySQL 还会自己权衡运行速度去更改,force 就是无论如何都强制使用该索引。

覆盖索引 &回表查询

尽量使用覆盖索引(查询使用了索引,并且需要返回的列,在该索引中已经全部能找到),减少 select *。


explain 中 extra 字段含义:using index condition:查找使用了索引,但是需要回表查询数据using where; using index;:查找使用了索引,但是需要的数据都在索引列中能找到,所以不需要回表查询


如果在聚集索引中直接能找到对应的行,则直接返回行数据,只需要一次查询,哪怕是 select *;如果在辅助索引中找聚集索引,如select id, name from xxx where name='xxx';,也只需要通过辅助索引(name)查找到对应的 id,返回 name 和 name 索引对应的 id 即可,只需要一次查询;如果是通过辅助索引查找其他字段,则需要回表查询,如select id, name, gender from xxx where name='xxx';


所以尽量不要用select *,容易出现回表查询,降低效率,除非有联合索引包含了所有字段


面试题:一张表,有四个字段(id, username, password, status),由于数据量大,需要对以下 SQL 语句进行优化,该如何进行才是最优方案:select id, username, password from tb_user where username='itcast';


解:给 username 和 password 字段建立联合索引,则不需要回表查询,直接覆盖索引

前缀索引

当字段类型为字符串(varchar, text 等)时,有时候需要索引很长的字符串,这会让索引变得很大,查询时,浪费大量的磁盘 IO,影响查询效率,此时可以只降字符串的一部分前缀,建立索引,这样可以大大节约索引空间,从而提高索引效率。


语法:create index idx_xxxx on table_name(columnn(n));前缀长度:可以根据索引的选择性来决定,而选择性是指不重复的索引值(基数)和数据表的记录总数的比值,索引选择性越高则查询效率越高,唯一索引的选择性是 1,这是最好的索引选择性,性能也是最好的。求选择性公式:


select count(distinct email) / count(*) from tb_user;select count(distinct substring(email, 1, 5)) / count(*) from tb_user;
复制代码


show index 里面的 sub_part 可以看到接取的长度

单列索引 &联合索引

单列索引:即一个索引只包含单个列联合索引:即一个索引包含了多个列在业务场景中,如果存在多个查询条件,考虑针对于查询字段建立索引时,建议建立联合索引,而非单列索引。


单列索引情况:explain select id, phone, name from tb_user where phone = '17799990010' and name = '韩信';这句只会用到 phone 索引字段

注意事项
  • 多条件联合查询时,MySQL 优化器会评估哪个字段的索引效率更高,会选择该索引完成本次查询

设计原则

  1. 针对于数据量较大,且查询比较频繁的表建立索引

  2. 针对于常作为查询条件(where)、排序(order by)、分组(group by)操作的字段建立索引

  3. 尽量选择区分度高的列作为索引,尽量建立唯一索引,区分度越高,使用索引的效率越高

  4. 如果是字符串类型的字段,字段长度较长,可以针对于字段的特点,建立前缀索引

  5. 尽量使用联合索引,减少单列索引,查询时,联合索引很多时候可以覆盖索引,节省存储空间,避免回表,提高查询效率

  6. 要控制索引的数量,索引并不是多多益善,索引越多,维护索引结构的代价就越大,会影响增删改的效率

  7. 如果索引列不能存储 NULL 值,请在创建表时使用 NOT NULL 约束它。当优化器知道每列是否包含 NULL 值时,它可以更好地确定哪个索引最有效地用于查询

发布于: 刚刚阅读数: 4
用户头像

卷不死,就往…… 2021.10.19 加入

2019NOIP退役成员,华为云享专家,阿里云专家博主,csdn博主,努力进行算法分享,有问题欢迎私聊

评论

发布
暂无评论
MySql索引_6月月更_秋名山码民_InfoQ写作社区