Flink 流处理 API 大合集:掌握所有 flink 流处理技术,看这一篇就够了
- 2022 年 6 月 28 日
- 本文字数:12995 字 - 阅读完需:约 43 分钟 
注:本文内容为纯干货,字数较多,建议先点赞收藏慢慢学习研读!
前言
在之前的文章中有提到过,一个 flink 应用程序开发的步骤大致为五个步骤:构建执行环境、获取数据源、操作数据源、输出到外部系统、触发程序执行。由这五个模块组成了一个 flink 任务,接下来围绕着每个模块对应的 API 进行梳理。以下所有的代码案例都已收录在本人的 Gitee 仓库,有需要的同学点击链接直接获取:Gitee 地址:https://gitee.com/xiaoZcode/flink_test
 
 一、构建流执行环境(Environment)
getExecutionEnvironment()
创建一个执行环境,表示当前执行程序的上下文。 如果程序是独立调用的,则此方法返回本地执行环境;如果从命令行客户端调用程序以提交到集群,则此方法返回此集群的执行环境。它会根据查询运行的方式决定返回什么样的运行环境,是最常用的一种创建执行环境的方式。
代码如下:
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnvironment();
createLocalEnvironment()
返回本地执行环境,需要在调用时指定默认的并行度。
代码如下:
LocalStreamEnvironment env = StreamExecutionEnvironment.createLocalEnvironment(1);
createRemoteEnvironment()
返回集群执行环境,将 Jar 提交到远程服务器。需要在调用时指定 JobManager 的 IP 和端口号,并指定要在集群中运行的 Jar 包。
代码如下:
StreamExecutionEnvironment env = StreamExecutionEnvironment.createRemoteEnvironment("jobmanage-hostname", 6123, "YOURPATH//xxx.jar");
二、加载数据源(Source)
案例场景:
工业物联网的背景下,收集传感器的温度值,将收集到不同传感器的温度值进行计算分析操作。注:以下代码都围绕此场景进行编写,获取更完整源代码请移步文章开头部分。
创建传感器对象:SensorReading
public class SensorReading {
    private String id;    private Long timestamp;    private Double temperature;
    public SensorReading() {
    }
    public SensorReading(String id, Long timestamp, Double temperature) {        this.id = id;        this.timestamp = timestamp;        this.temperature = temperature;    }
    public String getId() {        return id;    }
    public void setId(String id) {        this.id = id;    }
    public Long getTimestamp() {        return timestamp;    }
    public void setTimestamp(Long timestamp) {        this.timestamp = timestamp;    }
    public Double getTemperature() {        return temperature;    }
    public void setTemperature(Double temperature) {        this.temperature = temperature;    }
    @Override    public String toString() {        return "SensorReading{" +                "id='" + id + '\'' +                ", timestamp=" + timestamp +                ", temperature=" + temperature +                '}';    }}
从集合读取数据
public class SourceTest1_Collection {    public static void main(String[] args) throws Exception {        // 创建执行环境        StreamExecutionEnvironment env=StreamExecutionEnvironment.getExecutionEnvironment();        //设置并行度为 1        env.setParallelism(1);
        //从集合中读取数据        DataStream<SensorReading> dataStream  = env.fromCollection(Arrays.asList(                new SensorReading("sensor_1", 1547718199L, 35.8),                new SensorReading("sensor_2", 1547718199L, 35.0),                new SensorReading("sensor_3", 1547718199L, 38.8),                new SensorReading("sensor_4", 1547718199L, 39.8)        ));
        DataStream<Integer> integerDataStream = env.fromElements(1, 2, 3, 4, 5, 789);
        //打印输出        dataStream.print("data");        integerDataStream.print("int");
        //执行程序        env.execute();    }}
从文件读取数据
从文件中获取数据源的核心代码部分:
DataStream<String> dataStream = env.readTextFile("xxx ");
public class SourceTest2_File {    public static void main(String[] args) throws Exception {        StreamExecutionEnvironment env=StreamExecutionEnvironment.getExecutionEnvironment();        env.setParallelism(1);
        //从文件读取数据        DataStream<String> dataStream = env.readTextFile("sensor.txt");
         dataStream.print();
         env.execute();    }}
从 Kafka 读取数据
首先需要引入 Kafka 的以来到工程中
<dependency>   <groupId>org.apache.flink</groupId>   <artifactId>flink-connector-kafka-0.11_2.12</artifactId>   <version>1.10.1</version></dependency>
public class SourceTest3_Kafka {    public static void main(String[] args) throws Exception {        StreamExecutionEnvironment env=StreamExecutionEnvironment.getExecutionEnvironment();        env.setParallelism(1);
        Properties properties=new Properties();        properties.setProperty("bootstrap.servers","localhost:9092");        properties.setProperty("group.id","consumer-group");        properties.setProperty("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");        properties.setProperty("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");        properties.setProperty("auto.offset.reset","latest");
        DataStream<String> dataStream=env.addSource(new FlinkKafkaConsumer011<String>("sensor",new SimpleStringSchema(),properties));
        dataStream.print();
        env.execute();
    }}
自定义数据源 Source
除了从集合、文件以及 Kafka 中获取数据外,还给我们提供了一个自定义 source 的方式,需要传入 sourceFunction 函数。核心代码如下:
DataStream<SensorReading> dataStream = env.addSource( new MySensor());
public class SourceTest4_UDF {    public static void main(String[] args) throws Exception {        StreamExecutionEnvironment env=StreamExecutionEnvironment.getExecutionEnvironment();        env.setParallelism(1);
        //从文件读取数据        DataStream<SensorReading> dataStream = env.addSource(new MySensorSource());
        dataStream.print();
        env.execute();    }
    // 实现自定义数据源    public static class MySensorSource implements SourceFunction<SensorReading>{        // 定义一个标记位,控制数据产生        private boolean running = true;
        @Override        public void run(SourceContext<SensorReading> ctv) throws Exception {            // 随机数            Random random=new Random();
            //设置10个初始温度            HashMap<String, Double> sensorTempMap = new HashMap<>();            for (int i = 0; i < 10; i++) {                sensorTempMap.put("sensor_"+(i+1), 60 + random.nextGaussian() * 20); // 正态分布            }            while (running){                for (String sensorId: sensorTempMap.keySet()) {                    Double newTemp = sensorTempMap.get(sensorId) + random.nextGaussian();                    sensorTempMap.put(sensorId,newTemp);                    ctv.collect(new SensorReading(sensorId,System.currentTimeMillis(),newTemp));                }                Thread.sleep(1000);            }        }
        @Override        public void cancel() {            running=false;        }    }}
三、转换算子(Transform)
获取到指定的数据源后,还要对数据源进行分析计算等操作,
基本转换算子:Map、flatMap、Filter
 
 public class TransformTest1_Base {    public static void main(String[] args) throws Exception {        StreamExecutionEnvironment env=StreamExecutionEnvironment.getExecutionEnvironment();        env.setParallelism(1);
        //从文件读取数据        DataStream<String> inputStream = env.readTextFile("sensor.txt");
        // 1. map 把String转换成长度生成        DataStream<Integer> mapStream = inputStream.map(new MapFunction<String, Integer>() {            @Override            public Integer map(String value) throws Exception {                return value.length();            }        });
    //   2. flatmap 按逗号切分字段        DataStream<String> flatMapStream = inputStream.flatMap(new FlatMapFunction<String, String>() {            @Override            public void flatMap(String value, Collector<String> out) throws Exception {                String[] fields=value.split(",");                for (String field : fields){                    out.collect(field);                }            }        });
    //    3. filter ,筛选sensor_1 开头对id对应的数据        DataStream<String> filterStream=inputStream.filter(new FilterFunction<String>() {            @Override            public boolean filter(String value) throws Exception {                return value.startsWith("sensor_1");            }        });
    //    打印输出        mapStream.print("map");        flatMapStream.print("flatMap");        filterStream.print("filter");
    // 执行程序        env.execute();    }}
KeyBy、滚动聚合算子【sum()、min()、max()、minBy()、maxBy()】
- KeyBy:DataStream → KeyedStream:逻辑地将一个流拆分成不相交的分区,每个分区包含具有相同 key 的元素,在内部以 hash 的形式实现的。 
- 如上算子可以针对 KeyedStream 的每一个支流做聚合。 
 
 public class TransformTest2_RollingAggregation {    public static void main(String[] args) throws Exception {        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();        env.setParallelism(1);
        //从文件读取数据        DataStream<String> inputStream = env.readTextFile("sensor.txt");
        // 转换成SensorReading类型        DataStream<SensorReading> dataStream=inputStream.map(new MapFunction<String, SensorReading>() {            @Override            public SensorReading map(String s) throws Exception {                String[] fields=s.split(",");                return new SensorReading(fields[0],new Long(fields[1]),new Double(fields[2]));            }        });
        // DataStream<SensorReading> dataStream = inputStream.map(line -> {        //     String[] fields = line.split(",");        //     return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));        // });
        // 分组        KeyedStream<SensorReading, Tuple> keyedStream = dataStream.keyBy("id");        // KeyedStream<SensorReading, String> keyedStream1 = dataStream.keyBy(SensorReading::getId);
        //滚动聚合,取当前最大的温度值        // DataStream<SensorReading> resultStream = keyedStream.maxBy("temperature");        DataStream<SensorReading> resultStream = keyedStream.maxBy("temperature");
        resultStream.print();
        env.execute();    }}
Reduce
KeyedStream → DataStream:一个分组数据流的聚合操作,合并当前的元素和上次聚合的结果,产生一个新的值,返回的流中包含每一次聚合的结果,而不是只返回最后一次聚合的最终结果。
public class TransformTest3_Reduce {    public static void main(String[] args) throws Exception {        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();        env.setParallelism(1);
        //从文件读取数据        DataStream<String> inputStream = env.readTextFile("sensor.txt");
        // 转换成SensorReading类型        DataStream<SensorReading> dataStream=inputStream.map(new MapFunction<String, SensorReading>() {            @Override            public SensorReading map(String s) throws Exception {                String[] fields=s.split(",");                return new SensorReading(fields[0],new Long(fields[1]),new Double(fields[2]));            }        });        // 分组        KeyedStream<SensorReading, Tuple> keyedStream = dataStream.keyBy("id");
        // reduce 聚合,取最大的温度,以及当前最新对时间戳        DataStream<SensorReading> resultStream = keyedStream.reduce(new ReduceFunction<SensorReading>() {            @Override            public SensorReading reduce(SensorReading value1, SensorReading value2) throws Exception {                return new SensorReading(value1.getId(), value2.getTimestamp(), Math.max(value1.getTemperature(), value2.getTemperature()));            }        });        resultStream.print();        env.execute();    }}
分流【Split 、Select】、合流【Connect 、CoMap、union】
Split
DataStream → SplitStream:根据某些特征把一个 DataStream 拆分成两个或者多个 DataStream。
 
 Select
SplitStream→DataStream:从一个 SplitStream 中获取一个或者多个 DataStream。
 
 Connect
DataStream,DataStream → ConnectedStreams:连接两个保持他们类型的数据流,两个数据流被 Connect 之后,只是被放在了一个同一个流中,内部依然保持各自的数据和形式不发生任何变化,两个流相互独立。
 
 CoMap、CoFlatMap
ConnectedStreams → DataStream:作用于 ConnectedStreams 上,功能与 map 和 flatMap 一样,对 ConnectedStreams 中的每一个 Stream 分别进行 map 和 flatMap 处理。
 
 Union
DataStream → DataStream:对两个或者两个以上的 DataStream 进行 union 操作,产生一个包含所有 DataStream 元素的新 DataStream。
 
 DataStream<SensorReading> unionStream = xxxstream.union(xxx);
==Connect 与 Union 区别:==
- Union 之前两个流的类型必须是一样,Connect 可以不一样,在之后的 coMap 中再去调整成为一样的。 
- Connect 只能操作两个流,Union 可以操作多个。 
public class TransformTest4_MultipleStreams {    public static void main(String[] args) throws Exception {        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();        env.setParallelism(1);
        //从文件读取数据        DataStream<String> inputStream = env.readTextFile("sensor.txt");
        // 转换成SensorReading类型        DataStream<SensorReading> dataStream=inputStream.map(new MapFunction<String, SensorReading>() {            @Override            public SensorReading map(String s) throws Exception {                String[] fields=s.split(",");                return new SensorReading(fields[0],new Long(fields[1]),new Double(fields[2]));            }        });
        // 1。分流 按照温度值30度为界进行分流        SplitStream<SensorReading> splitStream = dataStream.split(new OutputSelector<SensorReading>() {            @Override            public Iterable<String> select(SensorReading value) {                return (value.getTemperature() > 30) ? Collections.singletonList("high") : Collections.singletonList("low");            }        });        // 通过条件选择对应流数据        DataStream<SensorReading> highTempStream = splitStream.select("high");        DataStream<SensorReading> lowTempStream = splitStream.select("low");        DataStream<SensorReading> allTempStream = splitStream.select("high","low");
        highTempStream.print("high");        lowTempStream.print("low");        allTempStream.print("all");
        // 2。合流 connect,先将高温流转换为二元组,与低温流合并后,输出状态信息。        DataStream<Tuple2<String, Double>> warningStream = highTempStream.map(new MapFunction<SensorReading, Tuple2<String, Double>>() {            @Override            public Tuple2<String, Double> map(SensorReading value) throws Exception {                return new Tuple2<>(value.getId(), value.getTemperature());            }        });
        // 只能是两条流进行合并,但是两条流的数据类型可以不一致        ConnectedStreams<Tuple2<String, Double>, SensorReading> connectStream = warningStream.connect(lowTempStream);        DataStream<Object> resultStream = connectStream.map(new CoMapFunction<Tuple2<String, Double>, SensorReading, Object>() {            @Override            public Object map1(Tuple2<String, Double> value) throws Exception {                return new Tuple3<>(value.f0, value.f1, "high temp warning");            }
            @Override            public Object map2(SensorReading value) throws Exception {                return new Tuple2<>(value.getId(), "normal");            }        });
        resultStream.print();
        // 3。union联合多条流 限制就是每条流数据类型必须一致        DataStream<SensorReading> union = highTempStream.union(lowTempStream, allTempStream);        union.print("union stream");
        env.execute();    }}
四、数据输出(Sink)
Flink 官方提供了一部分框架的 Sink,用户也可以自定义实现 Sink。flink 将任务进行输出的操作核心代码:stream.addSink(new MySink(xxxx))。
Kafka 引入 Kafka 依赖:
<dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-connector-kafka-0.11_2.12</artifactId> <version>1.10.1</version></dependency>
public class SinkTest1_Kafka {    public static void main(String[] args) throws Exception {        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();        env.setParallelism(1);
        //从文件读取数据        DataStream<String> inputStream = env.readTextFile("/Volumes/Update/flink/flink_test/src/main/resources/sensor.txt");
        // 转换成SensorReading类型        DataStream<String> dataStream=inputStream.map(new MapFunction<String, String>() {            @Override            public String map(String s) throws Exception {                String[] fields=s.split(",");                return new SensorReading(fields[0],new Long(fields[1]),new Double(fields[2])).toString();            }        });
        //输出到外部系统        dataStream.addSink(new FlinkKafkaProducer011<String>("localhost:9092","sinktest",new SimpleStringSchema()));
        env.execute();    }}
Redis 引入 Redis 依赖:
<dependency> <groupId>org.apache.bahir</groupId> <artifactId>flink-connector-redis_2.11</artifactId> <version>1.0</version></dependency>
public class SinkTest2_Redis {    public static void main(String[] args) throws Exception {        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();        env.setParallelism(1);
        //从文件读取数据        DataStream<String> inputStream = env.readTextFile("/Volumes/Update/flink/flink_test/src/main/resources/sensor.txt");
        // 转换成SensorReading类型        DataStream<SensorReading> dataStream=inputStream.map(new MapFunction<String, SensorReading>() {            @Override            public SensorReading map(String s) throws Exception {                String[] fields=s.split(",");                return new SensorReading(fields[0],new Long(fields[1]),new Double(fields[2]));            }        });        // jedis配置        FlinkJedisPoolConfig config = new FlinkJedisPoolConfig.Builder()                .setHost("localhost")                .setPort(6379)                .build();        dataStream.addSink(new RedisSink<>(config,new MyRedisMapper()));
        env.execute();    }    // 自定义RedisMapper    public static class MyRedisMapper implements RedisMapper<SensorReading>{        //自定义保存数据到Redis的命令,存成hash表Hset        @Override        public RedisCommandDescription getCommandDescription() {            return new RedisCommandDescription(RedisCommand.HSET,"sensor_temp");        }
        @Override        public String getKeyFromData(SensorReading data) {            return data.getId();        }
        @Override        public String getValueFromData(SensorReading data) {            return data.getTemperature().toString();        }    }
}
Elasticsearch 引入依赖:
<dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-connector-elasticsearch6_2.12</artifactId> <version>1.10.1</version></dependency>
public class SinkTest3_ES {    public static void main(String[] args) throws Exception {        StreamExecutionEnvironment env;        env = StreamExecutionEnvironment.getExecutionEnvironment();        env.setParallelism(1);
        //从文件读取数据        DataStream<String> inputStream = env.readTextFile("/Volumes/Update/flink/flink_test/src/main/resources/sensor.txt");
        // 转换成SensorReading类型        DataStream<SensorReading> dataStream=inputStream.map(new MapFunction<String, SensorReading>() {            public SensorReading map(String s) throws Exception {                String[] fields=s.split(",");                return new SensorReading(fields[0],new Long(fields[1]),new Double(fields[2]));            }        });        // 定义ES的链接配置        ArrayList<HttpHost> httpHosts = new ArrayList<>();        httpHosts.add(new HttpHost("localhost",9200));
        dataStream.addSink(new ElasticsearchSink.Builder<SensorReading>(httpHosts,new MyEsSinkFunction()).build());                env.execute();    }
    //实现自定义的ES写入操作    public static class MyEsSinkFunction implements ElasticsearchSinkFunction<SensorReading> {        @Override        public void process(SensorReading element, RuntimeContext ctx, RequestIndexer indexer) {            // 定义写入的数据source            HashMap<String, String> dataSource = new HashMap<>();            dataSource.put("id",element.getId());            dataSource.put("temp",element.getTemperature().toString());            dataSource.put("ts",element.getTimestamp().toString());
            // 创建请求作为向ES发起的写入命令            IndexRequest indexRequest = Requests.indexRequest()                    .index("sensor")                    .type("readingdata")                    .source(dataSource);
            // 用indexer发送请求            indexer.add(indexRequest);        }    }}
自定义 Sink(JDBC)引入依赖:
<dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> <version>5.1.44</version></dependency>
public class SinkTest4_JDBC {    public static void main(String[] args) throws Exception {        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();        env.setParallelism(1);
        //从文件读取数据        DataStream<String> inputStream = env.readTextFile("sensor.txt");
        // 转换成SensorReading类型        DataStream<SensorReading> dataStream=inputStream.map(new MapFunction<String, SensorReading>() {            @Override            public SensorReading map(String s) throws Exception {                String[] fields=s.split(",");                return new SensorReading(fields[0],new Long(fields[1]),new Double(fields[2]));            }        });
        dataStream.addSink(new MyJDBCSink());        env.execute();    }
    // 实现自定义SinkFunction    public static class MyJDBCSink extends RichSinkFunction<SensorReading> {        //声明连接和预编译        Connection connection=null;        PreparedStatement insert=null;        PreparedStatement update=null;        @Override        public void open(Configuration parameters) throws Exception {            connection= DriverManager.getConnection("jdbc:mysql://localhost:3306/test","root","123456");            insert=connection.prepareStatement("insert into sensor_temp (id,temp) values (?,?)");            update=connection.prepareStatement("update sensor_temp set temp = ? where id = ? ");        }
        // 每来一条数据,调用链接,执行sql        @Override        public void invoke(SensorReading value, Context context) throws Exception {           // 直接执行更新            update.setDouble(1,value.getTemperature());            update.setString(2,value.getId());            update.execute();            if (update.getUpdateCount() == 0){                insert.setString(1,value.getId());                insert.setDouble(2,value.getTemperature());                insert.execute();            }        }
        // 关闭连接流        @Override        public void close() throws Exception {            connection.close();            insert.close();            update.close();        }    }}
五、数据类型、UDF 函数、富函数
Flink 支持的数据类型
- Flink 支持所有的 Java 和 Scala 基础数据类型,Int, Double, Long, String 等 
DataStream<Integer> numberStream = env.fromElements(1, 2, 3, 4);
- Java 和 Scala 元组(Tuples) 
DataStream<Tuple2<String, Integer>> personStream = env.fromElements( new Tuple2("Adam", 17), new Tuple2("Sarah", 23) );personStream.filter(p -> p.f1 > 18);
- Flink 对 Java 和 Scala 中的一些特殊目的的类型也都是支持的,比如 Java 的 ArrayList,HashMap,Enum 等等 
UDF 函数
Flink 暴露了所有 udf 函数的接口(实现方式为接口或者抽象类)。例如 MapFunction, FilterFunction, ProcessFunction 等等。
富函数(Rich Functions)
“富函数”是 DataStream API 提供的一个函数类的接口,所有 Flink 函数类都有其 Rich 版本。它与常规函数的不同在于,可以获取运行环境的上下文,并拥有一些生命周期方法,所以可以实现更复杂的功能。RichMapFunction、RichFlatMapFunction、RichFilterFunction
==Rich Function 有一个生命周期的概念。典型的生命周期方法有:==
- open()方法是 rich function 的初始化方法,当一个算子例如 map 或者 filter 被调用之前 open()会被调用。 
- close()方法是生命周期中的最后一个调用的方法,做一些清理工作。 
- getRuntimeContext()方法提供了函数的 RuntimeContext 的一些信息,例如函 数执行的并行度,任务的名字,以及 state 状态。 
public class TransformTest5_RichFunction {    public static void main(String[] args) throws Exception {        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();        env.setParallelism(4);
        //从文件读取数据        DataStream<String> inputStream = env.readTextFile("sensor.txt");
        // 转换成SensorReading类型        DataStream<SensorReading> dataStream=inputStream.map(new MapFunction<String, SensorReading>() {            @Override            public SensorReading map(String s) throws Exception {                String[] fields=s.split(",");                return new SensorReading(fields[0],new Long(fields[1]),new Double(fields[2]));            }        });
        DataStream<Tuple2<String,Integer>> resultStream=dataStream.map(new MyMapper());        resultStream.print();
        env.execute();    }
    public static class MyMapper0 implements MapFunction<SensorReading,Tuple2<String,Integer>>{        @Override        public Tuple2<String, Integer> map(SensorReading value) throws Exception {            return new Tuple2<>(value.getId(),value.getId().length());        }    }
    // 继承富函数    public static class MyMapper extends RichMapFunction<SensorReading,Tuple2<String,Integer>>{        @Override        public Tuple2<String, Integer> map(SensorReading value) throws Exception {            // getRuntimeContext().getState()            return new Tuple2<String,Integer>(value.getId(),getRuntimeContext().getIndexOfThisSubtask());        }
        @Override        public void open(Configuration parameters) throws Exception {            // 初始化工作,一般是定义状态,或者创建数据库链接            System.out.println("open");            // super.open(parameters);        }
        @Override        public void close() throws Exception {            // 关闭链接,收尾状态            System.out.println("close");            // super.close();        }    }}
版权声明: 本文为 InfoQ 作者【百思不得小赵】的原创文章。
原文链接:【http://xie.infoq.cn/article/b9eff26fa337055b401364151】。文章转载请联系作者。

百思不得小赵
该来的总会来,或迟或早。🎈 2022.06.13 加入
有JAVA方面3年学习经验,csdn/51cto等平台优质作者,华为云云享专家、阿里云受邀专家博主,擅长JAVA,大数据等方面的技术等。










 
    
评论