package 最短路;
public class Dijkstra {
/*
* 参数adjMatrix:为图的权重矩阵,权值为-1的两个顶点表示不能直接相连
* 函数功能:返回顶点0到其它所有顶点的最短距离,其中顶点0到顶点0的最短距离为0
*/
public int[] getShortestPaths(int[][] adjMatrix) {
int[] result = new int[adjMatrix.length]; //用于存放顶点0到其它顶点的最短距离
boolean[] used = new boolean[adjMatrix.length]; //用于判断顶点是否被遍历
used[0] = true; //表示顶点0已被遍历
for(int i = 1;i < adjMatrix.length;i++) {
result[i] = adjMatrix[0][i];
used[i] = false;
}
for(int i = 1;i < adjMatrix.length;i++) {
int min = Integer.MAX_VALUE; //用于暂时存放顶点0到i的最短距离,初始化为Integer型最大值
int k = 0;
for(int j = 1;j < adjMatrix.length;j++) { //找到顶点0到其它顶点中距离最小的一个顶点
if(!used[j] && result[j] != -1 && min > result[j]) {
min = result[j];
k = j;
}
}
used[k] = true; //将距离最小的顶点,记为已遍历
for(int j = 1;j < adjMatrix.length;j++) { //然后,将顶点0到其它顶点的距离与加入中间顶点k之后的距离进行比较,更新最短距离
if(!used[j]) { //当顶点j未被遍历时
//首先,顶点k到顶点j要能通行;这时,当顶点0到顶点j的距离大于顶点0到k再到j的距离或者顶点0无法直接到达顶点j时,更新顶点0到顶点j的最短距离
if(adjMatrix[k][j] != -1 && (result[j] > min + adjMatrix[k][j] || result[j] == -1))
result[j] = min + adjMatrix[k][j];
}
}
}
return result;
}
public static void main(String[] args) {
Dijkstra test = new Dijkstra();
int[][] adjMatrix = {{0,6,3,-1,-1,-1},
{6,0,2,5,-1,-1},
{3,2,0,3,4,-1},
{-1,5,3,0,2,3},
{-1,-1,4,2,0,5},
{-1,-1,-1,3,5,0}};
int[] result = test.getShortestPaths(adjMatrix);
System.out.println("顶点0到图中所有顶点之间的最短距离为:");
for(int i = 0;i < result.length;i++)
System.out.print(result[i]+" ");
}
}
评论