写点什么

固定 QPS 压测模式探索

用户头像
FunTester
关注
发布于: 3 小时前

在早前跟测试同行在 QQ 群聊天的时候,聊过一个固定 QPS 压测的问题,最近突然有需求,想实现一下,丰富一下自己的性能测试框架,最新的代码请移步我的GitHub,地址:https://github.com/JunManYuanLong/FunTester,gitee地址:https://gitee.com/fanapi/tester

思路

  • 有一个多线程的基类,其他压测任务类继承于基类。

  • 并发执行类由线程池任务发生器补偿器组成。

  • 单线程执行任务发生器将生成的任务对象丢到线程池里面执行。

  • 另起补偿器线程完成缺失的补偿。(由于多种原因,真实发生量小于设定值)


总体的思路与如何mock固定QPS的接口moco固定QPS接口升级补偿机制这两票文章一致,但是没有采取Semaphore的模式,原因是moco是多线程对单线程,压测是单线程对多线程。


  • 语言继续采用Java语言。

基类

写得有点仓促,还未进行大量实践,所以注释少一些。这里依然设计两种子模式:定量压测定时压测,这里由于两种压测模式,通过一个属性isTimesMode记录,在执行类FixedQpsConcurrent中用到,单次压测任务对象统一isTimesModelimit两个属性。


package com.fun.base.constaint;
import com.fun.base.interfaces.MarkThread;import com.fun.config.HttpClientConstant;import com.fun.frame.execute.FixedQpsConcurrent;import com.fun.frame.httpclient.GCThread;import com.fun.utils.Time;import org.slf4j.Logger;import org.slf4j.LoggerFactory;
public abstract class FixedQpsThread<T> extends ThreadBase {
private static Logger logger = LoggerFactory.getLogger(FixedQpsThread.class);
public int qps;
public int limit;
public boolean isTimesMode;
public FixedQpsThread(T t, int limit, int qps, MarkThread markThread) { this.limit = limit; this.qps = qps; this.mark = markThread; this.t = t; isTimesMode = limit > 1000 ? true : false; }

protected FixedQpsThread() { super(); }
@Override public void run() { try { before(); threadmark = mark == null ? EMPTY : this.mark.mark(this); long s = Time.getTimeStamp(); doing(); long e = Time.getTimeStamp(); long diff = e - s; FixedQpsConcurrent.allTimes.add(diff); FixedQpsConcurrent.executeTimes.getAndIncrement(); if (diff > HttpClientConstant.MAX_ACCEPT_TIME) FixedQpsConcurrent.marks.add(diff + CONNECTOR + threadmark); } catch (Exception e) { logger.warn("执行任务失败!", e); logger.warn("执行失败对象的标记:{}", threadmark); FixedQpsConcurrent.errorTimes.getAndIncrement(); } finally { after(); } }
@Override public void before() { GCThread.starts(); }
/** * 子类必需实现改方法,不然调用deepclone方法会报错 * * @return */ public abstract FixedQpsThread clone();

}
复制代码

执行类

此处补偿线程设计还待优化,中间有两处休眠:一处是循环检测是否需要补偿,一处是单词补偿间隔。尚未提取配置变量,有待后面实践之后进行优化调整。测试结果对象依然采用了原来的,数值和计算方式保持一致,后期也会根据实践结果进行调整,可以关注我的GitHub及时获取更新。


package com.fun.frame.execute;
import com.fun.base.bean.PerformanceResultBean;import com.fun.base.constaint.FixedQpsThread;import com.fun.config.Constant;import com.fun.frame.Save;import com.fun.frame.SourceCode;import com.fun.frame.httpclient.GCThread;import com.fun.utils.Time;import com.fun.utils.WriteRead;import org.slf4j.Logger;import org.slf4j.LoggerFactory;
import java.util.ArrayList;import java.util.Collections;import java.util.List;import java.util.Vector;import java.util.concurrent.ExecutorService;import java.util.concurrent.TimeUnit;import java.util.concurrent.atomic.AtomicInteger;
import static java.util.stream.Collectors.toList;
/** * 并发类,用于启动压力脚本 */public class FixedQpsConcurrent extends SourceCode {
private static Logger logger = LoggerFactory.getLogger(FixedQpsConcurrent.class);
public static boolean key = false;
public static AtomicInteger executeTimes = new AtomicInteger();
public static AtomicInteger errorTimes = new AtomicInteger();
public static Vector<String> marks = new Vector<>();
/** * 用于记录所有请求时间 */ public static Vector<Long> allTimes = new Vector<>();
/** * 开始时间 */ public long startTime;
/** * 结束时间 */ public long endTime;
public int queueLength;
/** * 任务描述 */ public String desc = DEFAULT_STRING;
/** * 任务集 */ public List<FixedQpsThread> threads = new ArrayList<>();
/** * 线程池 */ ExecutorService executorService;
/** * @param thread 线程任务 */ public FixedQpsConcurrent(FixedQpsThread thread) { this(thread, DEFAULT_STRING); }
/** * @param threads 线程组 */ public FixedQpsConcurrent(List<FixedQpsThread> threads) { this(threads, DEFAULT_STRING); }
/** * @param thread 线程任务 * @param desc 任务描述 */ public FixedQpsConcurrent(FixedQpsThread thread, String desc) { this(); this.queueLength = 1; threads.add(thread); this.desc = desc + Time.getNow(); }
/** * @param threads 线程组 * @param desc 任务描述 */ public FixedQpsConcurrent(List<FixedQpsThread> threads, String desc) { this(); this.threads = threads; this.queueLength = threads.size(); this.desc = desc + Time.getNow(); }
private FixedQpsConcurrent() { executorService = ThreadPoolUtil.createPool(20, 200, 3); }
/** * 执行多线程任务 * 默认取list中thread对象,丢入线程池,完成多线程执行,如果没有threadname,name默认采用desc+线程数作为threadname,去除末尾的日期 */ public PerformanceResultBean start() { key = false; FixedQpsThread fixedQpsThread = threads.get(0); boolean isTimesMode = fixedQpsThread.isTimesMode; int limit = fixedQpsThread.limit; int qps = fixedQpsThread.qps; long interval = 1_000_000_000 / qps; AidThread aidThread = new AidThread(); new Thread(aidThread).start(); startTime = Time.getTimeStamp(); while (true) { executorService.execute(threads.get(limit-- % queueLength).clone()); if (key ? true : isTimesMode ? limit < 1 : Time.getTimeStamp() - startTime > fixedQpsThread.limit) break; sleep(interval); } endTime = Time.getTimeStamp(); aidThread.stop(); GCThread.stop(); try { executorService.shutdown(); executorService.awaitTermination(10, TimeUnit.SECONDS); } catch (InterruptedException e) { logger.error("线程池等待任务结束失败!", e); } logger.info("总计执行 {} ,共用时:{} s,执行总数:{},错误数:{}!", fixedQpsThread.isTimesMode ? fixedQpsThread.limit + "次任务" : "秒", Time.getTimeDiffer(startTime, endTime), executeTimes, errorTimes); return over(); }
private PerformanceResultBean over() { key = true; Save.saveLongList(allTimes, "data/" + queueLength + desc); Save.saveStringListSync(marks, MARK_Path.replace(LONG_Path, EMPTY) + desc); allTimes = new Vector<>(); marks = new Vector<>(); executeTimes.set(0); errorTimes.set(0); return countQPS(queueLength, desc, Time.getTimeByTimestamp(startTime), Time.getTimeByTimestamp(endTime)); }
/** * 计算结果 * <p>此结果仅供参考</p> * * @param name 线程数 */ public PerformanceResultBean countQPS(int name, String desc, String start, String end) { List<String> strings = WriteRead.readTxtFileByLine(Constant.DATA_Path + name + desc); int size = strings.size(); List<Integer> data = strings.stream().map(x -> changeStringToInt(x)).collect(toList()); int sum = data.stream().mapToInt(x -> x).sum(); Collections.sort(data); String statistics = StatisticsUtil.statistics(data, desc, this.queueLength); double qps = 1000.0 * size * name / sum; return new PerformanceResultBean(desc, start, end, name, size, sum / size, qps, getPercent(executeTimes.get(), errorTimes.get()), 0, executeTimes.get(), statistics); }

/** * 用于做后期的计算 * * @param name * @param desc * @return */ public PerformanceResultBean countQPS(int name, String desc) { return countQPS(name, desc, Time.getDate(), Time.getDate()); }
/** * 后期计算用 * * @param name * @return */ public PerformanceResultBean countQPS(int name) { return countQPS(name, EMPTY, Time.getDate(), Time.getDate()); }

/** * 补偿线程 */ class AidThread implements Runnable {
private boolean key = true;
int i;
public AidThread() {
}
@Override public void run() { logger.info("补偿线程开始!"); while (key) { long expect = (Time.getTimeStamp() - startTime) / 1000 * threads.get(0).qps; if (expect > executeTimes.get() + 10) { range((int) expect - executeTimes.get()).forEach(x -> { sleep(100); executorService.execute(threads.get(i++ % queueLength).clone()); }); } sleep(3); } logger.info("补偿线程结束!"); }
public void stop() { key = false; }

}

}
复制代码


其他配套的标记类统计类还等待修改,比较简单,这里不放代码了。




FunTester 热文精选

发布于: 3 小时前阅读数: 3
用户头像

FunTester

关注

公众号:FunTester,650+原创,欢迎关注 2020.10.20 加入

Have Fun,Tester! 公众号FunTester,坚持原创文章的测试人。 FunTester测试框架作者,DCS_FunTester分布式性能测试框架作者。

评论

发布
暂无评论
固定QPS压测模式探索