互联网架构“高并发”到底怎么玩,用 Elasticsearch 搞定日均 1 亿订单查询
首先,我们需要了解一下知识点:
高并发系统:它的通用设计方法是什么
架构分层:我们为什么一定要这么做?
系统设计目标(一):如何提升系统性能?
系统设计目标(二):系统怎样做到高可用?
系统设计目标(三):如何让系统易于扩展?
Step ②:数据库
==============
在第一步中,我已经从宏观的角度带你了解了高并发系统设计的基础知识,你已经知晓了,我们系统设计的目的是为了获得更好的性能、更高的可用性,以及更强的系统扩展能力。
那么在这一步,我们正式进入演进篇,我会再从局部出发,带你逐一了解完成这些目标会使用到的一些方法,这些方法会针对性地解决高并发系统设计中出现的问题。
池化技术:如何减少频繁创建数据库连接的性能损耗?
数据库优化方案(一):查询请求增加时,如何做主从分离?
数据库优化方案(二):写入数据量增加时,如何实现分库分表?
发号器:如何保证分库分表后 ID 的全局唯一性?
NoSQL:在高并发场景下,数据库和 NoSQL 如何做到互补?
Step ③:缓存
=============
通过前面数据库篇的学习,你已经了解了在高并发大流量下,数据库层的演进过程以及库表设计上的考虑点。
那么我将从缓存定义、缓存分类和缓存优势劣势三个方面全方位带你掌握缓存的设计思想和理念,带你针对性地掌握使用缓存的正确姿势,以便让你在实际工作中能够更好地使用缓存提升整体系统的性能。
缓存:数据库成为瓶颈后,动态数据的查询要如何加速?
缓存的使用姿势(一):如何选择缓存的读写策略?
缓存的使用姿势(二):缓存如何做到高可用?
缓存的使用姿势(三):缓存穿透了怎么办?
CDN:静态资源如何加速?
Stpe ④:消息队列
===============
1 秒钟之内,有 1 万个数据库连接同时达到,系统的数据库濒临崩溃,寻找能够应对如此高并发的写请求方案迫在眉睫。这时你想到了消息队列。
这里我会从以下几个问题去带大家学习如何使用消息队列解决秒杀场景下的问题:
消息队列:秒杀时如何处理每秒上万次的下单请求?
消息投递:如何保证消息仅仅被消费一次?
消息队列:如何降低消息队列系统中消息的延迟?
Step ⑤:分布式服务
================
通过前面几个篇章的内容,你已经从数据库、缓存和消息队列的角度对自己的垂直电商系统在性能、可用性和扩展性上做了优化。
但是有一个问题一直萦绕在你的心里:究竟是什么促使我们将一体化架构,拆分成微服务化架构?是不是说系统的整体 QPS 到了 1 万,或者到了 2 万,就一定要做微服务化拆分呢?
我将从以下几个点去讲解,为什么我们要用分布式服务?它好在哪里、如何实现?
系统架构:每秒 1 万次请求的系统要做服务化拆分吗?
微服务架构:微服务化后,系统架构要如何改造?
RPC 框架:10 万 QPS 下如何实现毫秒级的服务调用?
注册中心:分布式系统如何寻址?
分布式 Trace:横跨几十个分布式组件的慢请求要如何排查?
负载均衡:怎样提升系统的横向扩展能力?
API 网关:系
统的门面要如何做呢?
多机房部署:跨地域的分布式系统如何做?
Service Mesh:如何屏蔽服务化系统的服务治理细节?
Step ⑥:维护
=============
要想快速地发现和定位业务系统中出现的问题,必须搭建一套完善的服务端监控体系。正所谓“道路千万条,监控第一条,监控不到位,领导两行泪”。不过,在搭建的过程中,你的团队又陷入了困境:
首先,监控的指标要如何选择呢?
采集这些指标可以有哪些方法和途径呢?
评论