写点什么

SICP 习题 2.6 之丘奇数

发布于: 2021 年 05 月 11 日
SICP 习题2.6之丘奇数

16 年时阅读 SICP 时写下这篇文章,现在看来感觉还可以,再次发出来和大家一起讨论一下。


最近一直在阅读《SICP》,然后下午做其中的习题 2.6,对其题意很不理解,于是搜索了相关资料,不禁如题设所说感到如雷灌顶,特此记录下来,以供大家阅读和交流。

题目

请考虑,在一个可以对程序做各类操作的语言中,我们完全可以没有数(至少是没有整数,比如说 0,1,2)的情况下,可以将 zero 和加一操作实现为:

(define zero (lambda (f) (lambda (x) x)))  # 定义zero(define (add-1 n)    (lambda (f) (lambda (x) (f ((n f) x))))) # 定义加一操作
复制代码


上述语言是 LISP,同学们不必了解其语法,也能大致了解语句的含义。下一小节中会做出具体的解释。

这一表现形式称为 Church 计数,也就是丘奇数,名字来源于其发明人数理学家 Church,请直接定义 one 和 two(不使用 zero 和 add-1 )(提示:利用代换法去求值)。请给出加法过程 + 的一个直接定义(不要反复应用 add-1 )

丘奇数

说实话,我一直没有看懂题目中关于 zero 和 add-1 的定义,于是我搜索了相关资料。下边就结合资料谈一下它的概念。

首先要明确的是丘奇数中的 zero,one 并不等同于数值上的 0, 1, 2。你可以理解为它是零概念的一种表现形式。换句话说,它就是零的函数式表现形式,而整数 0 则是零的数值表现形式。我们先来看一下丘奇数中 zero,one 和 two 的表现形式。

(define zero  (lambda (f) (lambda (x) x)))(define one  (lambda (f) (lambda (x) (f x))))(define two  (lambda (f) (lambda (x) (f (f x)))))
复制代码


我们会发现 zero,one 和 two 都是一个函数,它接收 (f) 作为参数,其返回结果是一个接收 (x) 作为参数的函数。大家可能需要注意的是,(f) 在这里显然也是一个函数,在 LISP 中函数是可以作为输入参数的。然后我们会发现 zero,one 和 two 的区别好像就是 (f) 函数被使用的次数。 zero 中 (f) 没有被使用,one 中 (f) 使用了一次,two 中 (f) 使用了两次。丘奇数就是用这个次数来表示 0, 1, 2 的概念。

我们可以实验一下检验一下

(define (inc n) (+ n 1)) ;inc是加一操作,作为zero的参数,返回一个函数,作用于数字0> ((zero inc) 0)  0 > ((zero inc) 1)1> ((one inc) 1)2> (((add-1 one) inc) 1)3
复制代码


我们定义一个过程 inc 就是数值意义上的加一,然后使用 zero, one 和 add-1 发现确实如同我们所想的,zero 表示 inc 过程不会被使用,返回原数值;one 表示 inc 被使用一次,返回加一的数值。

替换法求 one

我们来使用替换法通过 add-1 和 zero 来求解 one 吧,求解 two 的过程类似。

(add-1 zero) ;展开add-1定义(lambda (f) (lambda (x) (f ((zero f) x))))
; 替换zero(lambda (f) (lambda (x) (f ((lambda (x) x) x))))
; 简化,因为((lambda (x) x) x)就等于x(lambda (f) (lambda (x) (f x)))
复制代码

加法定义

首先我们要明白丘奇数加法的含义,我们先记其加法为 add-church ,那么如下代码所示,最后一个过程得出的值应该是多少呢?

> ((one incr) 1)2> ((two incr) 1)3> (((add-church one two) incr) 1)?
复制代码


根据猜测,应该是 4 吧。因为 one 表示 incr 对 1 这个数值使用一次,two 标示使用两次,那么将二者加起来,那么就应该是 three 的含义啦,就是表示 incr 对 1 这个数值使用 3 次,那么就是 4 啦。

add-church 的实现如下

(define (add-church m n)   (lambda (f) (lambda (x) ((m f) ((n f) x)))))(define (add-1 n)    (lambda (f) (lambda (x) (f ((n f) x))))) # 定义加一操作
复制代码


如果你将其与 add-1 进行对比,你会发现 add-1 中的 f 变成了(m f) ,如果把 add-1 中的 f 记住(one f),你可能就会更加理解。


比如 (f) 为 incr 函数,(n incr) 的结果就是一个进行 n 次 incr 的函数,(incr ((n incr) x)) 就是在 (n incr) 的基础上再进行一次 incr,所以就表示了 add-1 操作。所以((m incr) ((n incr) x))就代表在 (n incr) 的基础上再进行 m 次 incr,所以就是 add-church 操作。


那么大家思考一下, add-m 应该如何表示呢?

发布于: 2021 年 05 月 11 日阅读数: 11
用户头像

程序员历小冰 2018.04.28 加入

历小冰的技术博客,专注于探讨后端生态的点点滴滴,内容包括微服务、分布式、数据库、性能调优和各类源码分析。

评论

发布
暂无评论
SICP 习题2.6之丘奇数