大数据培训用 SQL 来实现用户行为漏斗分析
需求一:用户活跃主题
DWS 层--(用户行为宽表层) 目标:统计当日、当周、当月活动的每个设备明细
1 每日活跃设备明细 dwd_start_log--->dws_uv_detail_day
--把相同的字段 collect_set 到一个数组, 按 mid_id 分组(便于后边统计)
collect_set 将某字段的值进行去重汇总,产生 array 类型字段。如: concat_ws('|', collect_set(user_id)) user_id,
建分区表 dws_uv_detail_day:partitioned by ('dt' string)
drop table if exists dws_uv_detail_day;
create table dws_uv_detail_day(
mid_id
string COMMENT '设备唯一标识',
user_id
string COMMENT '用户标识',
version_code
string COMMENT '程序版本号',
version_name
string COMMENT '程序版本名',
lang
string COMMENT '系统语言',
source
string COMMENT '渠道号',
os
string COMMENT '安卓系统版本',
area
string COMMENT '区域',
model
string COMMENT '手机型号',
brand
string COMMENT '手机品牌',
sdk_version
string COMMENT 'sdkVersion',
gmail
string COMMENT 'gmail',
height_width
string COMMENT '屏幕宽高',
app_time
string COMMENT '客户端日志产生时的时间',
network
string COMMENT '网络模式',
lng
string COMMENT '经度',
lat
string COMMENT '纬度'
) COMMENT '活跃用户按天明细'
PARTITIONED BY ( dt
string)
stored as parquet
location '/warehouse/gmall/dws/dws_uv_detail_day/'
;
数据导入
按周分区;过滤出一周内的数据;按设备 id 分组;===>count(*)得到最终结果;
partition(dt='2019-02-10') from dwd_start_log where dt='2019-02-10' group by mid_id ( mid_id 设备唯一标示 )
以用户单日访问为 key 进行聚合,如果某个用户在一天中使用了两种操作系统、两个系统版本、多个地区,登录不同账号,只取其中之一
hive (gmall)>
set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table dws_uv_detail_day partition(dt='2019-02-10')
select
mid_id,
concat_ws('|', collect_set(user_id)) user_id,
concat_ws('|', collect_set(version_code)) version_code,
concat_ws('|', collect_set(version_name)) version_name,
concat_ws('|', collect_set(lang))lang,
concat_ws('|', collect_set(source)) source,
concat_ws('|', collect_set(os)) os,
concat_ws('|', collect_set(area)) area,
concat_ws('|', collect_set(model)) model,
concat_ws('|', collect_set(brand)) brand,
concat_ws('|', collect_set(sdk_version)) sdk_version,
concat_ws('|', collect_set(gmail)) gmail,
concat_ws('|', collect_set(height_width)) height_width,
concat_ws('|', collect_set(app_time)) app_time,
concat_ws('|', collect_set(network)) network,
concat_ws('|', collect_set(lng)) lng,
concat_ws('|', collect_set(lat)) lat
from dwd_start_log
where dt='2019-02-10'
group by mid_id;
查询导入结果;
hive (gmall)> select * from dws_uv_detail_day limit 1;
###最后 count(*)即是每日活跃设备的个数;
hive (gmall)> select count(*) from dws_uv_detail_day;
2 每周(dws_uv_detail_wk)活跃设备明细 partition(wk_dt)
周一到周日 concat(date_add(next_day('2019-02-10', 'MO'), -7), '_', date_add(next_day('2019-02-10', 'MO'), -1))即 2019-02-04_2019-02-10
创建分区表:partitioned by('wk_dt' string)
hive (gmall)>
drop table if exists dws_uv_detail_wk;
create table dws_uv_detail_wk(
mid_id
string COMMENT '设备唯一标识',
user_id
string COMMENT '用户标识',
version_code
string COMMENT '程序版本号',
version_name
string COMMENT '程序版本名',
lang
string COMMENT '系统语言',
source
string COMMENT '渠道号',
os
string COMMENT '安卓系统版本',
area
string COMMENT '区域',
model
string COMMENT '手机型号',
brand
string COMMENT '手机品牌',
sdk_version
string COMMENT 'sdkVersion',
gmail
string COMMENT 'gmail',
height_width
string COMMENT '屏幕宽高',
app_time
string COMMENT '客户端日志产生时的时间',
network
string COMMENT '网络模式',
lng
string COMMENT '经度',
lat
string COMMENT '纬度',
monday_date
string COMMENT '周一日期',
sunday_date
string COMMENT '周日日期'
) COMMENT '活跃用户按周明细'
PARTITIONED BY (wk_dt
string)
stored as parquet
location '/warehouse/gmall/dws/dws_uv_detail_wk/'
;
导入数据:以周为分区;过滤出一个月内的数据,按设备 id 分组;
周一:date_add(next_day('2019-05-16','MO'),-7);
周日:date_add(next_day('2019-05-16','MO'),-1);
周一---周日:concat(date_add(next_day('2019-05-16', 'MO'), -7), "_", date_add(next_day('2019-05-16', 'MO'), -1));
insert overwrite table dws_uv_detail_wk partition(wk_dt)
select mid_id,
concat_ws('|', collect_set(user_id)) user_id,
concat_ws('|', collect_set(version_code)) version_code,
concat_ws('|', collect_set(version_name)) version_name,
concat_ws('|', collect_set(lang)) lang,
concat_ws('|', collect_set(source)) source,
concat_ws('|', collect_set(os)) os,
concat_ws('|', collect_set(area)) area,
concat_ws('|', collect_set(model)) model,
concat_ws('|', collect_set(brand)) brand,
concat_ws('|', collect_set(sdk_version)) sdk_version,
concat_ws('|', collect_set(gmail)) gmail,
concat_ws('|', collect_set(height_width)) height_width,
concat_ws('|', collect_set(app_time)) app_time,
concat_ws('|', collect_set(network)) network,
concat_ws('|', collect_set(lng)) lng,
concat_ws('|', collect_set(lat)) lat,
date_add(next_day('2019-02-10', 'MO'), -7),
date_add(next_day('2019-02-10', 'MO'), -1),
concat(date_add(next_day('2019-02-10', 'MO'), -7), '_', date_add(next_day('2019-02-10', 'MO'), -1))
from dws_uv_detail_day
where dt >= date_add(next_day('2019-02-10', 'MO'), -7) and dt <= date_add(next_day('2019-02-10', 'MO'), -1)
group by mid_id;
查询导入结果
hive (gmall)> select * from dws_uv_detail_wk limit 1;
hive (gmall)> select count(*) from dws_uv_detail_wk;
3 每月活跃设备明细 dws_uv_detail_mn partition(mn) - 把每日的数据插入进去
DWS 层创建分区表 partitioned by(mn string)
hive (gmall)>
drop table if exists dws_uv_detail_mn;
create external table dws_uv_detail_mn(
mid_id
string COMMENT '设备唯一标识',
user_id
string COMMENT '用户标识',
version_code
string COMMENT '程序版本号',
version_name
string COMMENT '程序版本名',
lang
string COMMENT '系统语言',
source
string COMMENT '渠道号',
os
string COMMENT '安卓系统版本',
area
string COMMENT '区域',
model
string COMMENT '手机型号',
brand
string COMMENT '手机品牌',
sdk_version
string COMMENT 'sdkVersion',
gmail
string COMMENT 'gmail',
height_width
string COMMENT '屏幕宽高',
app_time
string COMMENT '客户端日志产生时的时间',
network
string COMMENT '网络模式',
lng
string COMMENT '经度',
lat
string COMMENT '纬度'
) COMMENT '活跃用户按月明细'
PARTITIONED BY (mn
string)
stored as parquet
location '/warehouse/gmall/dws/dws_uv_detail_mn/'
;
数据导入 按月分区;过滤出一个月内的数据,按照设备 id 分组;
data_format('2019-03-10', 'yyyy-MM') ---> 2019-03
where date_format('dt', 'yyyy-MM') = date_format('2019-02-10', 'yyyy-MM') group by mid_id;
hive (gmall)>
set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table dws_uv_detail_mn partition(mn)
select
mid_id,
concat_ws('|', collect_set(user_id)) user_id,
concat_ws('|', collect_set(version_code)) version_code,
concat_ws('|', collect_set(version_name)) version_name,
concat_ws('|', collect_set(lang)) lang,
concat_ws('|', collect_set(source)) source,
concat_ws('|', collect_set(os)) os,
concat_ws('|', collect_set(area)) area,
concat_ws('|', collect_set(model)) model,
concat_ws('|', collect_set(brand)) brand,
concat_ws('|', collect_set(sdk_version)) sdk_version,
concat_ws('|', collect_set(gmail)) gmail,
concat_ws('|', collect_set(height_width)) height_width,
concat_ws('|', collect_set(app_time)) app_time,
concat_ws('|', collect_set(network)) network,
concat_ws('|', collect_set(lng)) lng,
concat_ws('|', collect_set(lat)) lat,
date_format('2019-02-10','yyyy-MM')
from dws_uv_detail_day
where date_format(dt,'yyyy-MM') = date_format('2019-02-10','yyyy-MM')
group by mid_id;
查询导入结果
hive (gmall)> select * from dws_uv_detail_mn limit 1;
hive (gmall)> select count(*) from dws_uv_detail_mn ;
DWS 层加载数据脚本
在 hadoop101 的/home/kris/bin 目录下创建脚本
[kris@hadoop101 bin]$ vim dws.sh
#!/bin/bash
定义变量方便修改
APP=gmall
hive=/opt/module/hive/bin/hive
如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
do_date=$1
else
do_date=date -d "-1 day" +%F
fi
sql="
set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table "do_date')
select
mid_id,
concat_ws('|', collect_set(user_id)) user_id,
concat_ws('|', collect_set(version_code)) version_code,
concat_ws('|', collect_set(version_name)) version_name,
concat_ws('|', collect_set(lang)) lang,
concat_ws('|', collect_set(source)) source,
concat_ws('|', collect_set(os)) os,
concat_ws('|', collect_set(area)) area,
concat_ws('|', collect_set(model)) model,
concat_ws('|', collect_set(brand)) brand,
concat_ws('|', collect_set(sdk_version)) sdk_version,
concat_ws('|', collect_set(gmail)) gmail,
concat_ws('|', collect_set(height_width)) height_width,
concat_ws('|', collect_set(app_time)) app_time,
concat_ws('|', collect_set(network)) network,
concat_ws('|', collect_set(lng)) lng,
concat_ws('|', collect_set(lat)) lat
from "$APP".dwd_start_log
where dt='$do_date'
group by mid_id;
insert overwrite table "$APP".dws_uv_detail_wk partition(wk_dt)
select
mid_id,
concat_ws('|', collect_set(user_id)) user_id,
concat_ws('|', collect_set(version_code)) version_code,
concat_ws('|', collect_set(version_name)) version_name,
concat_ws('|', collect_set(lang)) lang,
concat_ws('|', collect_set(source)) source,
concat_ws('|', collect_set(os)) os,
concat_ws('|', collect_set(area)) area,
concat_ws('|', collect_set(model)) model,
concat_ws('|', collect_set(brand)) brand,
concat_ws('|', collect_set(sdk_version)) sdk_version,
concat_ws('|', collect_set(gmail)) gmail,
concat_ws('|', collect_set(height_width)) height_width,
concat_ws('|', collect_set(app_time)) app_time,
concat_ws('|', collect_set(network)) network,
concat_ws('|', collect_set(lng)) lng,
concat_ws('|', collect_set(lat)) lat,
date_add(next_day('$do_date','MO'),-7),
date_add(next_day('$do_date','SU'),-7),
concat(date_add( next_day('do_date','MO'),-7), '_' , date_add(next_day('do_date','MO'),-1)
)
from "$APP".dws_uv_detail_day
where dt>=date_add(next_day('do_date','MO'),-1)
group by mid_id;
insert overwrite table "$APP".dws_uv_detail_mn partition(mn)
select
mid_id,
concat_ws('|', collect_set(user_id)) user_id,
concat_ws('|', collect_set(version_code)) version_code,
concat_ws('|', collect_set(version_name)) version_name,
concat_ws('|', collect_set(lang))lang,
concat_ws('|', collect_set(source)) source,
concat_ws('|', collect_set(os)) os,
concat_ws('|', collect_set(area)) area,
concat_ws('|', collect_set(model)) model,
concat_ws('|', collect_set(brand)) brand,
concat_ws('|', collect_set(sdk_version)) sdk_version,
concat_ws('|', collect_set(gmail)) gmail,
concat_ws('|', collect_set(height_width)) height_width,
concat_ws('|', collect_set(app_time)) app_time,
concat_ws('|', collect_set(network)) network,
concat_ws('|', collect_set(lng)) lng,
concat_ws('|', collect_set(lat)) lat,
date_format('$do_date','yyyy-MM')
from "$APP".dws_uv_detail_day
where date_format(dt,'yyyy-MM') = date_format('$do_date','yyyy-MM')
group by mid_id;
"
sql"
增加脚本执行权限 chmod 777 dws.sh
脚本使用[kris@hadoop101 module]$ dws.sh 2019-02-11
查询结果
hive (gmall)> select count(*) from dws_uv_detail_day;
hive (gmall)> select count(*) from dws_uv_detail_wk;
hive (gmall)> select count(*) from dws_uv_detail_mn ;
脚本执行时间;企业开发中一般在每日凌晨 30 分~1 点
ADS 层 目标:当日、当周、当月活跃设备数 使用 day_count 表 join wk_count join mn_count , 把 3 张表连接一起
建表 ads_uv_count 表:
字段有 day_count、wk_count、mn_count is_weekend if(date_add(next_day('2019-02-10', 'MO'), -1) = '2019-02-10', 'Y', 'N') is_monthend if(last_day('2019-02-10') = '2019-02-10', 'Y', 'N')
drop table if exists ads_uv_count;
create external table ads_uv_count(
dt
string comment '统计日期',
day_count
bigint comment '当日用户量',
wk_count
bigint comment '当周用户量',
mn_count
bigint comment '当月用户量',
is_weekend
string comment 'Y,N 是否是周末,用于得到本周最终结果',
is_monthend
string comment 'Y,N 是否是月末,用于得到本月最终结果'
) comment '每日活跃用户数量'
stored as parquet
location '/warehouse/gmall/ads/ads_uv_count/';
导入数据:
hive (gmall)>
insert overwrite table ads_uv_count
select
'2019-02-10' dt,
daycount.ct,
wkcount.ct,
mncount.ct,
if(date_add(next_day('2019-02-10','MO'),-1)='2019-02-10','Y','N') ,
if(last_day('2019-02-10')='2019-02-10','Y','N')
from
(
select
'2019-02-10' dt,
count(*) ct
from dws_uv_detail_day
where dt='2019-02-10'
)daycount join
(
select
'2019-02-10' dt,
count (*) ct
from dws_uv_detail_wk
where wk_dt=concat(date_add(next_day('2019-02-10','MO'),-7),'_' ,date_add(next_day('2019-02-10','MO'),-1) )
) wkcount on daycount.dt=wkcount.dt
join
(
select
'2019-02-10' dt,
count (*) ct
from dws_uv_detail_mn
where mn=date_format('2019-02-10','yyyy-MM')
)mncount on daycount.dt=mncount.dt
;
查询导入结果
hive (gmall)> select * from ads_uv_count ;
ADS 层加载数据脚本
1)在 hadoop101 的/home/kris/bin 目录下创建脚本
[kris@hadoop101 bin]$ vim ads.sh
#!/bin/bash
定义变量方便修改
APP=gmall
hive=/opt/module/hive/bin/hive
如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
do_date=$1
else
do_date=date -d "-1 day" +%F
fi
sql="
set hive.exec.dynamic.partition.mode=nonstrict;
insert into table "$APP".ads_uv_count
select
'$do_date' dt,
daycount.ct,
wkcount.ct,
mncount.ct,
if(date_add(next_day('do_date','Y','N') ,
if(last_day('do_date','Y','N')
from
(
select
'$do_date' dt,
count(*) ct
from "$APP".dws_uv_detail_day
where dt='$do_date'
)daycount join
(
select
'$do_date' dt,
count (*) ct
from "$APP".dws_uv_detail_wk
where wk_dt=concat(date_add(next_day('do_date','MO'),-7),'_' ,date_add(next_day('do_date','MO'),-1) )
) wkcount on daycount.dt=wkcount.dt
join
(
select
'$do_date' dt,
count (*) ct
from "$APP".dws_uv_detail_mn
where mn=date_format('$do_date','yyyy-MM')
)mncount on daycount.dt=mncount.dt;
"
sql"
增加脚本执行权限 chmod 777 ads.sh
脚本使用 ads.sh 2019-02-11
查询导入结果 hive (gmall)> select * from ads_uv_count ;
需求二:用户新增主题
首次联网使用应用的用户。如果一个用户首次打开某 APP,那这个用户定义为新增用户;卸载再安装的设备,不会被算作一次新增。新增用户包括日新增用户、周新增用户、月新增用户。
每日新增(老用户不算,之前没登陆过,今天是第一次登陆)设备--没有分区 -->以往的新增库里边没有他,但他今天活跃了即新增加的用户_大数据培训;
1 DWS 层(每日新增设备明细表) 创建每日新增设备明细表:dws_new_mid_day
hive (gmall)>
drop table if exists dws_new_mid_day;
create table dws_new_mid_day
(
mid_id
string COMMENT '设备唯一标识',
user_id
string COMMENT '用户标识',
version_code
string COMMENT '程序版本号',
version_name
string COMMENT '程序版本名',
lang
string COMMENT '系统语言',
source
string COMMENT '渠道号',
os
string COMMENT '安卓系统版本',
area
string COMMENT '区域',
model
string COMMENT '手机型号',
brand
string COMMENT '手机品牌',
sdk_version
string COMMENT 'sdkVersion',
gmail
string COMMENT 'gmail',
height_width
string COMMENT '屏幕宽高',
app_time
string COMMENT '客户端日志产生时的时间',
network
string COMMENT '网络模式',
lng
string COMMENT '经度',
lat
string COMMENT '纬度',
create_date
string comment '创建时间'
) COMMENT '每日新增设备信息'
stored as parquet
location '/warehouse/gmall/dws/dws_new_mid_day/';
dws_uv_detail_day(每日活跃设备明细) left join dws_new_mid_day nm(以往的新增用户表, 新建字段 create_time2019-02-10) nm.mid_id is null;
导入数据
用每日活跃用户表 left join 每日新增设备表,关联的条件是 mid_id 相等。如果是每日新增的设备,则在每日新增设备表中为 null。
from dws_uv_detail_day ud left join dws_new_mid_day nm on ud.mid_id=nm.mid_id
where ud.dt='2019-02-10' and nm.mid_id is null;
hive (gmall)>
insert into table dws_new_mid_day
select
ud.mid_id,
ud.user_id ,
ud.version_code ,
ud.version_name ,
ud.lang ,
ud.source,
ud.os,
ud.area,
ud.model,
ud.brand,
ud.sdk_version,
ud.gmail,
ud.height_width,
ud.app_time,
ud.network,
ud.lng,
ud.lat,
'2019-02-10'
from dws_uv_detail_day ud left join dws_new_mid_day nm on ud.mid_id=nm.mid_id
where ud.dt='2019-02-10' and nm.mid_id is null;
查询导入数据
hive (gmall)> select count(*) from dws_new_mid_day ;
2 ADS 层(每日新增设备表) 创建每日新增设备表 ads_new_mid_count
hive (gmall)>
drop table if exists ads_new_mid_count
;
create table ads_new_mid_count
(
create_date
string comment '创建时间' ,
new_mid_count
BIGINT comment '新增设备数量'
) COMMENT '每日新增设备信息数量'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_new_mid_count/';
导入数据 count(*) dws_new_mid_day 表即可
加了 create_date 就必须 group by create_time,否则报错:not in GROUP BY key 'create_date'
hive (gmall)>
insert into table ads_new_mid_count
select create_date , count(*) from dws_new_mid_day
where create_date='2019-02-10'
group by create_date ;
查询导入数据
hive (gmall)> select * from ads_new_mid_count;
扩展每月新增:
--每月新增
drop table if exists dws_new_mid_mn;
create table dws_new_mid_mn(
mid_id
string COMMENT '设备唯一标识',
user_id
string COMMENT '用户标识',
version_code
string COMMENT '程序版本号',
version_name
string COMMENT '程序版本名',
lang
string COMMENT '系统语言',
source
string COMMENT '渠道号',
os
string COMMENT '安卓系统版本',
area
string COMMENT '区域',
model
string COMMENT '手机型号',
brand
string COMMENT '手机品牌',
sdk_version
string COMMENT 'sdkVersion',
gmail
string COMMENT 'gmail',
height_width
string COMMENT '屏幕宽高',
app_time
string COMMENT '客户端日志产生时的时间',
network
string COMMENT '网络模式',
lng
string COMMENT '经度',
lat
string COMMENT '纬度'
)comment "每月新增明细"
partitioned by(mn string)
stored as parquet
location "/warehouse/gmall/dws/dws_new_mid_mn";
insert overwrite table dws_new_mid_mn partition(mn)
select
um.mid_id,
um.user_id ,
um.version_code ,
um.version_name ,
um.lang ,
um.source,
um.os,
um.area,
um.model,
um.brand,
um.sdk_version,
um.gmail,
um.height_width,
um.app_time,
um.network,
um.lng,
um.lat,
date_format('2019-02-10', 'yyyy-MM')
from dws_uv_detail_mn um left join dws_new_mid_mn nm on um.mid_id = nm.mid_id
where um.mn =date_format('2019-02-10', 'yyyy-MM') and nm.mid_id = null; ----为什么加上它就是空的??查不到数据了呢
--##注意这里不能写出 date_format(um.mn, 'yyyy-MM') =date_format('2019-02-10', 'yyyy-MM')
|
需求三:用户留存主题
如果不考虑 2019-02-11 和 2019-02-12 的新增用户:2019-02-10 新增 100 人,一天后它的留存率是 30%,2 天 12 号它的留存率是 25%,3 天后留存率 32%;
站在 2019-02-12 号看 02-11 的留存率:新增 200 人,12 号的留存率是 20%;
站在 2019-02-13 号看 02-12 的留存率:新增 100 人,13 号即一天后留存率是 25%;
用户留存率的分析:昨日的新增且今天是活跃的 / 昨日的新增用户量
如今天 11 日,要统计 10 日的 用户留存率---->10 日的新设备且是 11 日活跃的 / 10 日新增设备 分母:10 日的新增设备(每日活跃 left join 以往新增设备表(nm) nm.mid_id is null ) 分子:每日活跃表(ud) join 每日新增表(nm) where ud.dt='今天' and nm.create_date = '昨天'
① DWS 层(每日留存用户明细表 dws_user_retention_day) 用户 1 天留存的分析:===>>
留存用户=前一天新增 join 今天活跃
用户留存率=留存用户/前一天新增
创建表:dws_user_retention_day
hive (gmall)>
drop table if exists dws_user_retention_day
;
create table dws_user_retention_day
(
mid_id
string COMMENT '设备唯一标识',
user_id
string COMMENT '用户标识',
version_code
string COMMENT '程序版本号',
version_name
string COMMENT '程序版本名',
lang
string COMMENT '系统语言',
source
string COMMENT '渠道号',
os
string COMMENT '安卓系统版本',
area
string COMMENT '区域',
model
string COMMENT '手机型号',
brand
string COMMENT '手机品牌',
sdk_version
string COMMENT 'sdkVersion',
gmail
string COMMENT 'gmail',
height_width
string COMMENT '屏幕宽高',
app_time
string COMMENT '客户端日志产生时的时间',
network
string COMMENT '网络模式',
lng
string COMMENT '经度',
lat
string COMMENT '纬度',
create_date
string comment '设备新增时间',
retention_day
int comment '截止当前日期留存天数'
) COMMENT '每日用户留存情况'
PARTITIONED BY ( dt
string)
stored as parquet
location '/warehouse/gmall/dws/dws_user_retention_day/'
;
导入数据(每天计算前 1 天的新用户访问留存明细)
from dws_uv_detail_day 每日活跃设备 ud join dws_new_mid_day 每日新增设备 nm on ud.mid_id =nm.mid_id where ud.dt='2019-02-11' and nm.create_date=date_add('2019-02-11',-1);
hive (gmall)>
insert overwrite table dws_user_retention_day partition(dt="2019-02-11")
select
nm.mid_id,
nm.user_id ,
nm.version_code ,
nm.version_name ,
nm.lang ,
nm.source,
nm.os,
nm.area,
nm.model,
nm.brand,
nm.sdk_version,
nm.gmail,
nm.height_width,
nm.app_time,
nm.network,
nm.lng,
nm.lat,
nm.create_date,
1 retention_day
from dws_uv_detail_day ud join dws_new_mid_day nm on ud.mid_id =nm.mid_id
where ud.dt='2019-02-11' and nm.create_date=date_add('2019-02-11',-1);
查询导入数据(每天计算前 1 天的新用户访问留存明细)
hive (gmall)> select count(*) from dws_user_retention_day;
② DWS 层(1,2,3,n 天留存用户明细表)直接插入数据:dws_user_retention_day 用 union all 连接起来,汇总到一个表中;1)直接导入数据(每天计算前 1,2,3,n 天的新用户访问留存明细) 直接改变这个即可以,date_add('2019-02-11',-3); -1 是一天的留存率;-2 是两天的留存率、-3 是三天的留存率
hive (gmall)>
insert overwrite table dws_user_retention_day partition(dt="2019-02-11")
select
nm.mid_id,
nm.user_id ,
nm.version_code ,
nm.version_name ,
nm.lang ,
nm.source,
nm.os,
nm.area,
nm.model,
nm.brand,
nm.sdk_version,
nm.gmail,
nm.height_width,
nm.app_time,
nm.network,
nm.lng,
nm.lat,
nm.create_date,
1 retention_day
from dws_uv_detail_day ud join dws_new_mid_day nm on ud.mid_id =nm.mid_id
where ud.dt='2019-02-11' and nm.create_date=date_add('2019-02-11',-1)
union all
select
nm.mid_id,
nm.user_id ,
nm.version_code ,
nm.version_name ,
nm.lang ,
nm.source,
nm.os,
nm.area,
nm.model,
nm.brand,
nm.sdk_version,
nm.gmail,
nm.height_width,
nm.app_time,
nm.network,
nm.lng,
nm.lat,
nm.create_date,
2 retention_day
from dws_uv_detail_day ud join dws_new_mid_day nm on ud.mid_id =nm.mid_id
where ud.dt='2019-02-11' and nm.create_date=date_add('2019-02-11',-2)
union all
select
nm.mid_id,
nm.user_id ,
nm.version_code ,
nm.version_name ,
nm.lang ,
nm.source,
nm.os,
nm.area,
nm.model,
nm.brand,
nm.sdk_version,
nm.gmail,
nm.height_width,
nm.app_time,
nm.network,
nm.lng,
nm.lat,
nm.create_date,
3 retention_day
from dws_uv_detail_day ud join dws_new_mid_day nm on ud.mid_id =nm.mid_id
where ud.dt='2019-02-11' and nm.create_date=date_add('2019-02-11',-3);
2)查询导入数据(每天计算前 1,2,3 天的新用户访问留存明细)
hive (gmall)> select retention_day , count(*) from dws_user_retention_day group by retention_day;
③ ADS 层 留存用户数 ads_user_retention_day_count 直接 count( * )即可 1)创建 ads_user_retention_day_count 表:
hive (gmall)>
drop table if exists ads_user_retention_day_count
;
create table ads_user_retention_day_count
(
create_date
string comment '设备新增日期',
retention_day
int comment '截止当前日期留存天数',
retention_count
bigint comment '留存数量'
) COMMENT '每日用户留存情况'
stored as parquet
location '/warehouse/gmall/ads/ads_user_retention_day_count/';
导入数据 按创建日期 create_date 和 留存天数 retention_day 进行分组 group by;
hive (gmall)>
insert into table ads_user_retention_day_count
select
create_date,
retention_day,
count(*) retention_count
from dws_user_retention_day
where dt='2019-02-11'
group by create_date,retention_day;
查询导入数据
hive (gmall)> select * from ads_user_retention_day_count;
---> 2019-02-10 1 112
④ 留存用户比率 retention_count / new_mid_count 即留存个数 / 新增个数 创建表 ads_user_retention_day_rate
hive (gmall)>
drop table if exists ads_user_retention_day_rate
;
create table ads_user_retention_day_rate
(
stat_date
string comment '统计日期',
create_date
string comment '设备新增日期',
retention_day
int comment '截止当前日期留存天数',
retention_count
bigint comment '留存数量',
new_mid_count
string comment '当日设备新增数量',
retention_ratio
decimal(10,2) comment '留存率'
) COMMENT '每日用户留存情况'
stored as parquet
location '/warehouse/gmall/ads/ads_user_retention_day_rate/';
导入数据
join ads_new_mid_countt --->每日新增设备表
hive (gmall)>
insert into table ads_user_retention_day_rate
select
'2019-02-11' ,
ur.create_date,
ur.retention_day,
ur.retention_count ,
nc.new_mid_count,
ur.retention_count/nc.new_mid_count*100
from
(
select
create_date,
retention_day,
count(*) retention_count
from dws_user_retention_day
where dt='2019-02-11'
group by create_date,retention_day
) ur join ads_new_mid_count nc on nc.create_date=ur.create_date;
查询导入数据
hive (gmall)>select * from ads_user_retention_day_rate;
2019-02-11 2019-02-10 1 112 442 25.34
需求四:沉默用户数
沉默用户:指的是只在安装当天启动过,且启动时间是在一周前
使用日活明细表 dws_uv_detail_day 作为 DWS 层数据
建表语句
hive (gmall)>
drop table if exists ads_slient_count;
create external table ads_slient_count(
dt
string COMMENT '统计日期',
slient_count
bigint COMMENT '沉默设备数'
)
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_slient_count';
导入数据
hive (gmall)>
insert into table ads_slient_count
select
'2019-02-20' dt,
count(*) slient_count
from
(
select mid_id
from dws_uv_detail_day
where dt<='2019-02-20'
group by mid_id
having count(*)=1 and min(dt)<date_add('2019-02-20',-7)
) t1;
需求五:本周回流用户数
本周回流=本周活跃-本周新增-上周活跃
使用日活明细表 dws_uv_detail_day 作为 DWS 层数据
本周回流(上周以前活跃过,上周没活跃,本周活跃了)=本周活跃-本周新增-上周活跃 本周回流=本周活跃 left join 本周新增 left join 上周活跃,且本周新增 id 为 null,上周活跃 id 为 null_大数据视频;
建表:
hive (gmall)>
drop table if exists ads_back_count;
create external table ads_back_count(
dt
string COMMENT '统计日期',
wk_dt
string COMMENT '统计日期所在周',
wastage_count
bigint COMMENT '回流设备数'
)
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_back_count';
导入数据
hive (gmall)>
insert into table ads_back_count
select
'2019-02-20' dt,
concat(date_add(next_day('2019-02-20','MO'),-7),'_',date_add(next_day('2019-02-20','MO'),-1)) wk_dt,
count(*)
from
(
select t1.mid_id
from
(
select mid_id
from dws_uv_detail_wk
where wk_dt=concat(date_add(next_day('2019-02-20','MO'),-7),'_',date_add(next_day('2019-02-20','MO'),-1))
)t1
left join
(
select mid_id
from dws_new_mid_day
where create_date<=date_add(next_day('2019-02-20','MO'),-1) and create_date>=date_add(next_day('2019-02-20','MO'),-7)
)t2
on t1.mid_id=t2.mid_id
left join
(
select mid_id
from dws_uv_detail_wk
where wk_dt=concat(date_add(next_day('2019-02-20','MO'),-7*2),'_',date_add(next_day('2019-02-20','MO'),-7-1))
)t3
on t1.mid_id=t3.mid_id
where t2.mid_id is null and t3.mid_id is null
)t4;
需求六:流失用户数
流失用户:最近 7 天未登录我们称之为流失用户
使用日活明细表 dws_uv_detail_day 作为 DWS 层数据
建表语句
hive (gmall)>
drop table if exists ads_wastage_count;
create external table ads_wastage_count(
dt
string COMMENT '统计日期',
wastage_count
bigint COMMENT '流失设备数'
)
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_wastage_count';
导入数据
hive (gmall)>
insert into table ads_wastage_count
select
'2019-02-20',
count(*)
from
(
select mid_id
from dws_uv_detail_day
group by mid_id
having max(dt)<=date_add('2019-02-20',-7)
)t1;
需求七:最近连续 3 周活跃用户数
最近 3 周连续活跃的用户:通常是周一对前 3 周的数据做统计,该数据一周计算一次。
使用周活明细表 dws_uv_detail_wk 作为 DWS 层数据
建表语句
hive (gmall)>
drop table if exists ads_continuity_wk_count;
create external table ads_continuity_wk_count(
dt
string COMMENT '统计日期,一般用结束周周日日期,如果每天计算一次,可用当天日期',
wk_dt
string COMMENT '持续时间',
continuity_count
bigint
)
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_continuity_wk_count';
导入数据
hive (gmall)>
insert into table ads_continuity_wk_count
select
'2019-02-20',
concat(date_add(next_day('2019-02-20','MO'),-7*3),'_',date_add(next_day('2019-02-20','MO'),-1)),
count(*)
from
(
select mid_id
from dws_uv_detail_wk
where wk_dt>=concat(date_add(next_day('2019-02-20','MO'),-73),'_',date_add(next_day('2019-02-20','MO'),-72-1))
and wk_dt<=concat(date_add(next_day('2019-02-20','MO'),-7),'_',date_add(next_day('2019-02-20','MO'),-1))
group by mid_id
having count(*)=3
)t1;
需求八:最近七天内连续三天活跃用户数
说明:最近 7 天内连续 3 天活跃用户数
使用日活明细表 dws_uv_detail_day 作为 DWS 层数据
建表
hive (gmall)>
drop table if exists ads_continuity_uv_count;
create external table ads_continuity_uv_count(
dt
string COMMENT '统计日期',
wk_dt
string COMMENT '最近 7 天日期',
continuity_count
bigint
) COMMENT '连续活跃设备数'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_continuity_uv_count';
导入数据
hive (gmall)>
insert into table ads_continuity_uv_count
select
'2019-02-12',
concat(date_add('2019-02-12',-6),'_','2019-02-12'),
count(*)
from
(
select mid_id
from
(
select mid_id
from
(
select
mid_id,
date_sub(dt,rank) date_dif
from
(
select
mid_id,
dt,
rank() over(partition by mid_id order by dt) rank
from dws_uv_detail_day
where dt>=date_add('2019-02-12',-6) and dt<='2019-02-12'
)t1
)t2
group by mid_id,date_dif
having count(*)>=3
)t3
group by mid_id
)t4;
ODS 层跟原始字段要一模一样;
DWD 层 dwd_order_info 订单表 dwd_order_detail 订单详情(订单和商品) dwd_user_info 用户表 dwd_payment_info 支付流水 dwd_sku_info 商品表(增加分类)
每日用户行为宽表 dws_user_action
字段:user_id、order_count、order_amount、payment_count、payment_amount 、comment_count
drop table if exists dws_user_action;
create external table dws_user_action(
user_id string comment '用户 id',
order_count bigint comment '用户下单数',
order_amount decimal(16, 2) comment '下单金额',
payment_count bigint comment '支付次数',
payment_amount decimal(16, 2) comment '支付金额',
comment_count bigint comment '评论次数'
)comment '每日用户行为宽表'
partitioned by(dt
string)
stored as parquet
location '/warehouse/gmall/dws/dws_user_action/'
tblproperties("parquet.compression"="snappy");
导入数据
0 占位符,第一个字段要有别名
with tmp_order as(
select user_id, count(*) order_count, sum(oi.total_amount) order_amount from dwd_order_info oi
where date_format(oi.create_time, 'yyyy-MM-dd')='2019-02-10' group by user_id
),
tmp_payment as(
select user_id, count(*) payment_count, sum(pi.total_amount) payment_amount from dwd_payment_info pi
where date_format(pi.payment_time, 'yyyy-MM-dd')='2019-02-10' group by user_id
),
tmp_comment as(
select user_id, count(*) comment_count from dwd_comment_log c
where date_format(c.dt, 'yyyy-MM-dd')='2019-02-10' group by user_id
)
insert overwrite table dws_user_action partition(dt='2019-02-10')
select user_actions.user_id, sum(user_actions.order_count), sum(user_actions.order_amount),
sum(user_actions.payment_count),
sum(user_actions.payment_amount),
sum(user_actions.comment_count) from(
select user_id, order_count, order_amount, 0 payment_count, 0 payment_amount, 0 comment_count from tmp_order
union all select user_id, 0, 0, payment_count, payment_amount, 0 from tmp_payment
union all select user_id, 0, 0, 0, 0, comment_count from tmp_comment
) user_actions group by user_id;
GMV 拍下订单金额;包括付款和未付款;
建表 ads_gmv_sum_day 语句:
drop table if exists ads_gmv_sum_day;
create table ads_gmv_sum_day(
dt
string comment '统计日期',
gmv_count
bigint comment '当日 GMV 订单个数',
gmv_amount
decimal(16, 2) comment '当日 GMV 订单总额',
gmv_payment
decimal(16, 2) comment '当日支付金额'
) comment 'GMV'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_gmv_sum_day';
导入数据:from 用户行为宽表 dws_user_action
sum(order_count) gmv_count 、 sum(order_amount) gmv_amount 、sum(payment_amount) payment_amount 过滤日期,以 dt 分组;
insert into table ads_gmv_sum_day
select '2019-02-10' dt, sum(order_count) gmv_count, sum(order_amount) gmv_amount, sum(payment_amount) gmv_payment
from dws_user_action where dt='2019-02-10' group by dt;
编写脚本:
#/bin/bash
APP=gmall
hive=/opt/module/hive/bin/hive
if [ -n "$1" ]; then
do_date=$1
else
do_date=date -d "-1 day" +%F
fi
sql="
insert into table "$APP".ads_gmv_sum_day
select '$do_date' dt, sum(order_count) gmv_count, sum(order_amount) gmv_amount, sum(payment_amount) gmv_payment
from "do_date' group by dt;
"
sql";
需求十:转化率=新增用户/日活用户
ads_user_convert_day
dt
uv_m_count 当日活跃设备
new_m_count 当日新增设备
new_m_ratio 新增占日活比率
ads_uv_count 用户活跃数(在行为数仓中;) day_count dt
ads_new_mid_count 用户新增表(行为数仓中) new_mid_count create_date
建表 ads_user_convert_day
drop table if exists ads_user_convert_day;
create table ads_user_convert_day(
dt
string comment '统计日期',
uv_m_count
bigint comment '当日活跃设备',
new_m_count
bigint comment '当日新增设备',
new_m_radio
decimal(10, 2) comment '当日新增占日活比率'
)comment '转化率'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_user_convert_day/';
数据导入 cast(sum( uc.nmc)/sum( uc.dc)*100 as decimal(10,2)) new_m_ratio ;使用 union all
insert into table ads_user_convert_day select '2019-02-10', sum(uc.dc) sum_dc, sum(uc.nmc) sum_nmc,
cast(sum(uc.nmc)/sum(uc.dc) * 100 as decimal(10, 2)) new_m_radio
from(select day_count dc, 0 nmc from ads_uv_count where dt='2019-02-10'
union all select 0 dc, new_mid_count from ads_new_mid_count where create_date='2019-02-10'
)uc;
访问到下单转化率| 下单到支付转化率
ads_user_action_convert_day
dt
total_visitor_m_count 总访问人数
order_u_count 下单人数
visitor2order_convert_ratio 访问到下单转化率
payment_u_count 支付人数
order2payment_convert_ratio 下单到支付转化率
dws_user_action (宽表中)
user_id
order_count
order_amount
payment_count
payment_amount
comment_count
ads_uv_count 用户活跃数(行为数仓中)
dt
day_count
wk_count
mn_count
is_weekend
is_monthend
建表
drop table if exists ads_user_action_convert_day;
create table ads_user_action_convert_day(
dt
string comment '统计日期',
total_visitor_m_count
bigint comment '总访问人数',
order_u_count
bigint comment '下单人数',
visitor2order_convert_radio
decimal(10, 2) comment '访问到下单转化率',
payment_u_count
bigint comment '支付人数',
order2payment_convert_radio
decimal(10, 2) comment '下单到支付的转化率'
)COMMENT '用户行为漏斗分析'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_user_convert_day/'
;
插入数据
insert into table ads_user_action_convert_day
select '2019-02-10', uv.day_count, ua.order_count,
cast(ua.order_count/uv.day_count * 100 as decimal(10, 2)) visitor2order_convert_radio,
ua.payment_count,
cast(ua.payment_count/ua.order_count * 100 as decimal(10, 2)) order2payment_convert_radio
from(
select sum(if(order_count>0, 1, 0)) order_count,
sum(if(payment_count>0, 1, 0)) payment_count
from dws_user_action where dt='2019-02-10'
)ua, ads_uv_count uv where uv.dt='2019-02-10';
需求十一:品牌复购率
需求:以月为单位统计,购买 2 次以上商品的用户,用户购买商品明细表 dws_sale_detail_daycount:(宽表)建表 dws_sale_detail_daycount
drop table if exists dws_sale_detail_daycount;
create external table dws_sale_detail_daycount(
user_id string comment '用户 id',
sku_id string comment '商品 Id',
user_gender string comment '用户性别',
user_age string comment '用户年龄',
user_level string comment '用户等级',
order_price decimal(10,2) comment '商品价格',
sku_name string comment '商品名称',
sku_tm_id string comment '品牌 id',
sku_category3_id string comment '商品三级品类 id',
sku_category2_id string comment '商品二级品类 id',
sku_category1_id string comment '商品一级品类 id',
sku_category3_name string comment '商品三级品类名称',
sku_category2_name string comment '商品二级品类名称',
sku_category1_name string comment '商品一级品类名称',
spu_id string comment '商品 spu',
sku_num int comment '购买个数',
order_count string comment '当日下单单数',
order_amount string comment '当日下单金额'
) comment '用户购买商品明细表'
partitioned by(dt
string)
stored as parquet
location '/warehouse/gmall/dws/dws_sale_detail_daycount'
tblproperties("parquet.compression"="snappy");
数据导入
ods_order_detail 订单详情表、dwd_user_info 用户表、dwd_sku_info 商品表
with tmp_detail as(
select user_id, sku_id, sum(sku_num) sku_num, count() order_count, sum(od.order_pricesku_num) order_amount
from ods_order_detail od where od.dt='2019-02-10' and user_id is not null group by user_id, sku_id
)
insert overwrite table dws_sale_detail_daycount partition(dt='2019-02-10')
select
tmp_detail.user_id,
tmp_detail.sku_id,
u.gender,
months_between('2019-02-10', u.birthday)/12 age,
u.user_level,
price,
sku_name,
tm_id,
category3_id ,
category2_id ,
category1_id ,
category3_name ,
category2_name ,
category1_name ,
spu_id,
tmp_detail.sku_num,
tmp_detail.order_count,
tmp_detail.order_amount
from tmp_detail
left join dwd_user_info u on u.id=tmp_detail.user_id and u.dt='2019-02-10'
left join dwd_sku_info s on s.id=tmp_detail.sku_id and s.dt='2019-02-10';
ADS 层 品牌复购率报表分析 建表 ads_sale_tm_category1_stat_mn
buycount 购买人数、buy_twice_last 两次以上购买人数、
buy_twice_last_ratio '单次复购率'、
buy_3times_last '三次以上购买人数',
buy_3times_last_ratio 多次复购率'
drop table ads_sale_tm_category1_stat_mn;
create table ads_sale_tm_category1_stat_mn
(
tm_id string comment '品牌 id ' ,
category1_id string comment '1 级品类 id ',
category1_name string comment '1 级品类名称 ',
buycount bigint comment '购买人数',
buy_twice_last bigint comment '两次以上购买人数',
buy_twice_last_ratio decimal(10,2) comment '单次复购率',
buy_3times_last bigint comment '三次以上购买人数',
buy_3times_last_ratio decimal(10,2) comment '多次复购率' ,
stat_mn string comment '统计月份',
stat_date string comment '统计日期'
) COMMENT '复购率统计'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_sale_tm_category1_stat_mn/'
;
插入数据
insert into table ads_sale_tm_category1_stat_mn
select mn.sku_tm_id,
mn.sku_category1_id,
mn.sku_category1_name,
sum(if(mn.order_count >= 1, 1, 0)) buycount,
sum(if(mn.order_count >= 2, 1, 0)) buyTwiceLast,
sum(if(mn.order_count >= 2, 1, 0)) / sum(if(mn.order_count >= 1, 1, 0)) buyTwiceLastRatio,
sum(if(mn.order_count >= 3, 1, 0)) buy3timeLast,
sum(if(mn.order_count >= 3, 1, 0)) / sum(if(mn.order_count >= 1, 1, 0)) buy3timeLastRadio,
date_format ('2019-02-10' ,'yyyy-MM') stat_mn,
'2019-02-10' stat_date
from (
select sd.sku_tm_id, sd.sku_category1_id, sd.sku_category1_name, user_id, sum(order_count) order_count
from dws_sale_detail_daycount sd where date_format(dt, 'yyyy-MM') <= date_format('2019-02-10', 'yyyy-MM')
group by sd.sku_tm_id, sd.sku_category1_id, user_id, sd.sku_category1_name
) mn
group by mn.sku_tm_id, mn.sku_category1_id, mn.sku_category1_name
;
数据导入脚本
1)在/home/kris/bin 目录下创建脚本 ads_sale.sh
[kris@hadoop101 bin]$ vim ads_sale.sh
#!/bin/bash
定义变量方便修改
APP=gmall
hive=/opt/module/hive/bin/hive
如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
do_date=$1
else
do_date=date -d "-1 day" +%F
fi
sql="
set hive.exec.dynamic.partition.mode=nonstrict;
insert into table "$APP".ads_sale_tm_category1_stat_mn
select
mn.sku_tm_id,
mn.sku_category1_id,
mn.sku_category1_name,
sum(if(mn.order_count>=1,1,0)) buycount,
sum(if(mn.order_count>=2,1,0)) buyTwiceLast,
sum(if(mn.order_count>=2,1,0))/sum( if(mn.order_count>=1,1,0)) buyTwiceLastRatio,
sum(if(mn.order_count>=3,1,0)) buy3timeLast ,
sum(if(mn.order_count>=3,1,0))/sum( if(mn.order_count>=1,1,0)) buy3timeLastRatio ,
date_format('$do_date' ,'yyyy-MM') stat_mn,
'$do_date' stat_date
from
(
select od.sku_tm_id,
od.sku_category1_id,
od.sku_category1_name,
user_id ,
sum(order_count) order_count
from "$APP".dws_sale_detail_daycount od
where date_format(dt,'yyyy-MM')<=date_format('$do_date' ,'yyyy-MM')
group by od.sku_tm_id, od.sku_category1_id, user_id, od.sku_category1_name
) mn
group by mn.sku_tm_id, mn.sku_category1_id, mn.sku_category1_name;
"
sql"
增加脚本执行权限
[kris@hadoop101 bin]$ chmod 777 ads_sale.sh
执行脚本导入数据
[kris@hadoop101 bin]$ ads_sale.sh 2019-02-11
查看导入数据
hive (gmall)>select * from ads_sale_tm_category1_stat_mn limit 2;
品牌复购率结果输出到 MySQL
1)在 MySQL 中创建 ads_sale_tm_category1_stat_mn 表
create table ads_sale_tm_category1_stat_mn
(
tm_id varchar(200) comment '品牌 id ' ,
category1_id varchar(200) comment '1 级品类 id ',
category1_name varchar(200) comment '1 级品类名称 ',
buycount varchar(200) comment '购买人数',
buy_twice_last varchar(200) comment '两次以上购买人数',
buy_twice_last_ratio varchar(200) comment '单次复购率',
buy_3times_last varchar(200) comment '三次以上购买人数',
buy_3times_last_ratio varchar(200) comment '多次复购率' ,
stat_mn varchar(200) comment '统计月份',
stat_date varchar(200) comment '统计日期'
)
2)编写 Sqoop 导出脚本
在/home/kris/bin 目录下创建脚本 sqoop_export.sh
[kris@hadoop101 bin]$ vim sqoop_export.sh
#!/bin/bash
db_name=gmall
export_data() {
/opt/module/sqoop/bin/sqoop export \
--connect "jdbc:mysql://hadoop101:3306/${db_name}?useUnicode=true&characterEncoding=utf-8" \
--username root \
--password 123456 \
--table $1 \
--num-mappers 1 \
--export-dir /warehouse/1 \
--input-fields-terminated-by "\t" \
--update-key "tm_id,category1_id,stat_mn,stat_date" \
--update-mode allowinsert \
--input-null-string '\N' \
--input-null-non-string '\N'
}
case $1 in
"ads_sale_tm_category1_stat_mn")
export_data "ads_sale_tm_category1_stat_mn"
;;
"all")
export_data "ads_sale_tm_category1_stat_mn"
;;
esac
3)执行 Sqoop 导出脚本
[kris@hadoop101 bin]$ chmod 777 sqoop_export.sh
[kris@hadoop101 bin]$ sqoop_export.sh all
4)在 MySQL 中查看结果
SELECT * FROM ads_sale_tm_category1_stat_mn;
需求十二:求每个等级的用户对应的复购率前十的商品排行
1)每个等级,每种商品,买一次的用户数,买两次的用户数=》得出复购率
2)利用开窗函数,取每个等级的前十
3)形成脚本
用户购买明细宽表 dws_sale_detail_daycount
① t1--按 user_leval, sku_id, user_id 统计下单次数
select
user_level,
sku_id,
user_id,
sum(order_count) order_count_sum
from dws_sale_detail_daycount
where date_format(dt, 'yyyy-MM') = date_format('2019-02-13', 'yyyy-MM')
group by user_level, sku_id, user_id limit 10;
② t2 --求出每个等级,每种商品,买一次的用户数,买两次的用户数 得出复购率
select
t1.user_level,
t1.sku_id,
sum(if(t1.order_count_sum > 0, 1, 0)) buyOneCount,
sum(if(t1.order_count_sum > 1, 1, 0)) buyTwiceCount,
sum(if(t1.order_count_sum > 1, 1, 0)) / sum(if(t1.order_count_sum > 0, 1, 0)) * 100 buyTwiceCountRatio,
'2019-02-13' stat_date
from(
select
user_level,
sku_id,
user_id,
sum(order_count) order_count_sum
from dws_sale_detail_daycount
where date_format(dt, 'yyyy-MM') = date_format('2019-02-13', 'yyyy-MM')
group by user_level, sku_id, user_id
) t1
group by t1.user_level, t1.sku_id;
③ t3 --按用户等级分区,复购率排序
select
t2.user_level,
t2.sku_id,
t2.buyOneCount,
t2.buyTwiceCount,
t2.buyTwiceCountRatio,
t2.stat_date
from(
select
t1.user_level,
t1.sku_id,
sum(if(t1.order_count_sum > 0, 1, 0)) buyOneCount,
sum(if(t1.order_count_sum > 1, 1, 0)) buyTwiceCount,
sum(if(t1.order_count_sum > 1, 1, 0)) / sum(if(t1.order_count_sum > 0, 1, 0)) * 100 buyTwiceCountRatio,
'2019-02-13' stat_date
from(
select
user_level,
sku_id,
user_id,
sum(order_count) order_count_sum
from dws_sale_detail_daycount
where date_format(dt, 'yyyy-MM') = date_format('2019-02-13', 'yyyy-MM')
group by user_level, sku_id, user_id
) t1
group by t1.user_level, t1.sku_id
)t2
④ -分区排序 rank()
select
t2.user_level,
t2.sku_id,
t2.buyOneCount,
t2.buyTwiceCount,
t2.buyTwiceCountRatio,
rank() over(partition by t2.sku_id order by t2.buyTwiceCount) rankNo
from(
select
t1.user_level,
t1.sku_id,
sum(if(t1.order_count_sum > 0, 1, 0)) buyOneCount,
sum(if(t1.order_count_sum > 1, 1, 0)) buyTwiceCount,
sum(if(t1.order_count_sum > 1, 1, 0)) / sum(if(t1.order_count_sum > 0, 1, 0)) * 100 buyTwiceCountRatio,
'2019-02-13' stat_date
from(
select
user_level,
sku_id,
user_id,
sum(order_count) order_count_sum
from dws_sale_detail_daycount
where date_format(dt, 'yyyy-MM') = date_format('2019-02-13', 'yyyy-MM')
group by user_level, sku_id, user_id
) t1
group by t1.user_level, t1.sku_id
)t2
⑤ 作为子查询取前 10
select t3.user_level, t3.sku_id, t3.buyOneCount, t3.buyTwiceCount, t3.buyTwiceCountRatio, t3.rankNo
from(
select
t2.user_level,
t2.sku_id,
t2.buyOneCount,
t2.buyTwiceCount,
t2.buyTwiceCountRatio,
rank() over(partition by t2.sku_id order by t2.buyTwiceCount) rankNo
from(
select
t1.user_level,
t1.sku_id,
sum(if(t1.order_count_sum > 0, 1, 0)) buyOneCount,
sum(if(t1.order_count_sum > 1, 1, 0)) buyTwiceCount,
sum(if(t1.order_count_sum > 1, 1, 0)) / sum(if(t1.order_count_sum > 0, 1, 0)) * 100 buyTwiceCountRatio,
'2019-02-13' stat_date
from(
select
user_level,
sku_id,
user_id,
sum(order_count) order_count_sum
from dws_sale_detail_daycount
where date_format(dt, 'yyyy-MM') = date_format('2019-02-13', 'yyyy-MM')
group by user_level, sku_id, user_id
) t1
group by t1.user_level, t1.sku_id
)t2
) t3 where rankNo <= 10;
文章转载来源于大数据学习与分享
评论