写点什么

万字长文解密数据异构最佳实践(含完整代码实现)!!

用户头像
冰河
关注
发布于: 12 分钟前
万字长文解密数据异构最佳实践(含完整代码实现)!!

大家好,我是冰河~~


在当今互联网行业,尤其是现在分布式、微服务开发环境下,为了提高搜索效率,以及搜索的精准度,会大量使用 Redis、Memcached 等 NoSQL 数据库,也会使用大量的 Solr、Elasticsearch 等全文检索服务和搜索引擎。那么,这个时候,就会有一个问题需要我们来思考和解决:那就是数据同步的问题!如何将实时变化的数据库中的数据同步到 Redis/Memcached 或者 Solr/Elasticsearch 中呢?

互联网背景下的数据同步需求

在当今互联网行业,尤其是现在分布式、微服务开发环境下,为了提高搜索效率,以及搜索的精准度,会大量使用 Redis、Memcached 等 NoSQL 数据库,也会使用大量的 Solr、Elasticsearch 等全文检索服务。那么,这个时候,就会有一个问题需要我们来思考和解决:那就是数据同步的问题!如何将实时变化的数据库中的数据同步到 Redis/Memcached 或者 Solr/Elasticsearch 中呢?


例如,我们在分布式环境下向数据库中不断的写入数据,而我们读数据可能需要从 Redis、Memcached 或者 Elasticsearch、Solr 等服务中读取。那么,数据库与各个服务中数据的实时同步问题,成为了我们亟待解决的问题。


试想,由于业务需要,我们引入了 Redis、Memcached 或者 Elasticsearch、Solr 等服务。使得我们的应用程序可能会从不同的服务中读取数据,如下图所示。



本质上讲,无论我们引入了何种服务或者中间件,数据最终都是从我们的 MySQL 数据库中读取出来的。那么,问题来了,如何将 MySQL 中的数据实时同步到其他的服务或者中间件呢?


注意:为了更好的说明问题,后面的内容以 MySQL 数据库中的数据同步到 Solr 索引库为例进行说明。

数据同步解决方案

1.在业务代码中同步

在增加、修改、删除之后,执行操作 Solr 索引库的逻辑代码。例如下面的代码片段。


public ResponseResult updateStatus(Long[] ids, String status){    try{        goodsService.updateStatus(ids, status);        if("status_success".equals(status)){            List<TbItem> itemList = goodsService.getItemList(ids, status);            itemSearchService.importList(itemList);            return new ResponseResult(true, "修改状态成功")        }    }catch(Exception e){        return new ResponseResult(false, "修改状态失败");    }}
复制代码


优点:


操作简便。


缺点:


业务耦合度高。


执行效率变低。

2.定时任务同步

在数据库中执行完增加、修改、删除操作后,通过定时任务定时的将数据库的数据同步到 Solr 索引库中。


定时任务技术有:SpringTask,Quartz。


哈哈,还有我开源的 mykit-delay 框架,开源地址为:https://github.com/sunshinelyz/mykit-delay


这里执行定时任务时,需要注意的一个技巧是:第一次执行定时任务时,从 MySQL 数据库中以时间字段进行倒序排列查询相应的数据,并记录当前查询数据的时间字段的最大值,以后每次执行定时任务查询数据的时候,只要按时间字段倒序查询数据表中的时间字段大于上次记录的时间值的数据,并且记录本次任务查询出的时间字段的最大值即可,从而不需要再次查询数据表中的所有数据。


注意:这里所说的时间字段指的是标识数据更新的时间字段,也就是说,使用定时任务同步数据时,为了避免每次执行任务都会进行全表扫描,最好是在数据表中增加一个更新记录的时间字段。


优点:


同步 Solr 索引库的操作与业务代码完全解耦。


缺点:


数据的实时性并不高。

3.通过 MQ 实现同步

在数据库中执行完增加、修改、删除操作后,向 MQ 中发送一条消息,此时,同步程序作为 MQ 中的消费者,从消息队列中获取消息,然后执行同步 Solr 索引库的逻辑。


我们可以使用下图来简单的标识通过 MQ 实现数据同步的过程。



我们可以使用如下代码实现这个过程。


public ResponseResult updateStatus(Long[] ids, String status){    try{        goodsService.updateStatus(ids, status);        if("status_success".equals(status)){            List<TbItem> itemList = goodsService.getItemList(ids, status);            final String jsonString = JSON.toJSONString(itemList);            jmsTemplate.send(queueSolr, new MessageCreator(){                @Override                public Message createMessage(Session session) throws JMSException{                    return session.createTextMessage(jsonString);                }            });        }        return new ResponseResult(true, "修改状态成功");    }catch(Exception e){        return new ResponseResult(false, "修改状态失败");    }}
复制代码


优点:


业务代码解耦,并且能够做到准实时。


缺点:


需要在业务代码中加入发送消息到 MQ 的代码,数据调用接口耦合。

4.通过 Canal 实现实时同步

Canal 是阿里巴巴开源的一款数据库日志增量解析组件,通过 Canal 来解析数据库的日志信息,来检测数据库中表结构和数据的变化,从而更新 Solr 索引库。


使用 Canal 可以做到业务代码完全解耦,API 完全解耦,可以做到准实时。

Canal 简介

阿里巴巴 MySQL 数据库 binlog 增量订阅与消费组件,基于数据库增量日志解析,提供增量数据订阅与消费,目前主要支持了 MySQL。


Canal 开源地址:https://github.com/alibaba/canal

Canal 工作原理

MySQL 主从复制的实现


从上图可以看出,主从复制主要分成三步:


  • Master 节点将数据的改变记录到二进制日志(binary log)中(这些记录叫做二进制日志事件,binary log events,可以通过 show binlog events 进行查看)。

  • Slave 节点将 Master 节点的二进制日志事件(binary log events)拷贝到它的中继日志(relay log)。

  • Slave 节点重做中继日志中的事件将改变反映到自己本身的数据库中。

Canal 内部原理

首先,我们来看下 Canal 的原理图,如下所示。



原理大致描述如下:


  • Canal 模拟 MySQL slave 的交互协议,伪装自己为 MySQL Slave ,向 MySQL Master 发送 dump 协议

  • MySQL Master 收到 dump 请求,开始推送 binary log 给 Slave (即 Canal )

  • Canal 解析 binary log 对象(原始为 byte 流)

Canal 内部结构


说明如下:


  • Server:代表一个 Canal 运行实例,对应一个 JVM 进程。

  • Instance:对应一个数据队列(1 个 Server 对应 1 个或者多个 Instance)。


接下来,我们再来看下 Instance 下的子模块,如下所示。



  • EventParser:数据源接入,模拟 Slave 协议和 Master 节点进行交互,协议解析。

  • EventSink:EventParser 和 EventStore 的连接器,对数据进行过滤、加工、归并和分发等处理。

  • EventSore:数据存储。

  • MetaManager:增量订阅和消费信息管理。

Canal 环境准备

设置 MySQL 远程访问

grant all privileges on *.* to 'root'@'%' identified by '123456';flush privileges;
复制代码

MySQL 配置

注意:这里的 MySQL 是基于 5.7 版本进行说明的。


Canal 的原理基于 MySQL binlog 技术,所以,要想使用 Canal 就要开启 MySQL 的 binlog 写入功能,建议配置 binlog 的模式为 row。


可以在 MySQL 命令行输入如下命令来查看 binlog 的模式。


SHOW VARIABLES LIKE 'binlog_format';
复制代码


执行效果如下所示。



可以看到,在 MySQL 中默认的 binlog 格式为 STATEMENT,这里我们需要将 STATEMENT 修改为 ROW。修改/etc/my.cnf 文件。


vim /etc/my.cnf
复制代码


在[mysqld]下面新增如下三项配置。


log-bin=mysql-bin  #开启MySQL二进制日志binlog_format=ROW #将二进制日志的格式设置为ROWserver_id=1 #server_id需要唯一,不能与Canal的slaveId重复
复制代码


修改完 my.cnf 文件后,需要重启 MySQL 服务。


service mysqld restart
复制代码


接下来,我们再次查看 binlog 模式。


SHOW VARIABLES LIKE 'binlog_format';
复制代码



可以看到,此时,MySQL 的 binlog 模式已经被设置为 ROW 了。

MySQL 创建用户授权

Canal 的原理是模式自己为 MySQL Slave,所以一定要设置 MySQL Slave 的相关权限。这里,需要创建一个主从同步的账户,并且赋予这个账户相关的权限。


CREATE USER canal@'localhost' IDENTIFIED BY 'canal';GRANT SELECT, REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO 'canal'@'localhost';FLUSH PRIVILEGES;
复制代码


Canal 部署安装

下载 Canal

这里,我们以 Canal 1.1.1 版本进行说明,小伙伴们可以到链接 https://github.com/alibaba/canal/releases/tag/canal-1.1.1 下载 Canal 1.1.1 版本。


上传解压

将下载好的 Canal 安装包,上传到服务器,并执行如下命令进行解压


mkdir -p /usr/local/canaltar -zxvf canal.deployer-1.1.1.tar.gz -C /usr/local/canal/
复制代码


解压后的目录如下所示。



各目录的说明如下:


  • bin:存储可执行脚本。

  • conf:存放配置文件。

  • lib:存放其他依赖或者第三方库。

  • logs:存放的是日志文件。

修改配置文件

在 Canal 的 conf 目录下有一个 canal.properties 文件,这个文件中配置的是 Canal Server 相关的配置,在这个文件中有如下一行配置。


canal.destinations=example
复制代码


这里的 example 就相当于 Canal 的一个 Instance,可以在这里配置多个 Instance,多个 Instance 之间以逗号分隔即可。同时,这里的 example 也对应着 Canal 的 conf 目录下的一个文件夹。也就是说,Canal 中的每个 Instance 实例都对应着 conf 目录下的一个子目录。


接下来,我们需要修改 Canal 的 conf 目录下的 example 目录的一个配置文件 instance.properties。


vim instance.properties
复制代码


修改如下配置项。


################################################################### canal slaveId,注意:不要与MySQL的server_id重复canal.instance.mysql.slaveId = 1234
#position info,需要改成自己的数据库信息canal.instance.master.address = 127.0.0.1:3306canal.instance.master.journal.name =canal.instance.master.position =canal.instance.master.timestamp =
#canal.instance.standby.address =#canal.instance.standby.journal.name =#canal.instance.standby.position =#canal.instance.standby.timestamp =
#username/password,需要改成自己的数据库信息canal.instance.dbUsername = canalcanal.instance.dbPassword = canalcanal.instance.defaultDatabaseName =canaldbcanal.instance.connectionCharset = UTF-8
#table regexcanal.instance.filter.regex = canaldb\\..*#################################################################
复制代码


选项含义:


  • canal.instance.mysql.slaveId : mysql 集群配置中的 serverId 概念,需要保证和当前 mysql 集群中 id 唯一;

  • canal.instance.master.address: mysql 主库链接地址;

  • canal.instance.dbUsername : mysql 数据库帐号;

  • canal.instance.dbPassword : mysql 数据库密码;

  • canal.instance.defaultDatabaseName : mysql 链接时默认数据库;

  • canal.instance.connectionCharset : mysql 数据解析编码;

  • canal.instance.filter.regex : mysql 数据解析关注的表,Perl 正则表达式.

启动 Canal

配置完 Canal 后,就可以启动 Canal 了。进入到 Canal 的 bin 目录下,输入如下命令启动 Canal。


./startup.sh
复制代码

测试 Canal

导入并修改源码

这里,我们使用 Canal 的源码进行测试,下载 Canal 的源码后,将其导入到 IDEA 中。



接下来,我们找到 example 下的 SimpleCanalClientTest 类进行测试。这个类的源码如下所示。


package com.alibaba.otter.canal.example;
import java.net.InetSocketAddress;
import com.alibaba.otter.canal.client.CanalConnector;import com.alibaba.otter.canal.client.CanalConnectors;import com.alibaba.otter.canal.common.utils.AddressUtils;
/** * 单机模式的测试例子 * * @author jianghang 2013-4-15 下午04:19:20 * @version 1.0.4 */public class SimpleCanalClientTest extends AbstractCanalClientTest {
public SimpleCanalClientTest(String destination){ super(destination); }
public static void main(String args[]) { // 根据ip,直接创建链接,无HA的功能 String destination = "example"; String ip = AddressUtils.getHostIp(); CanalConnector connector = CanalConnectors.newSingleConnector( new InetSocketAddress(ip, 11111), destination, "canal", "canal");
final SimpleCanalClientTest clientTest = new SimpleCanalClientTest(destination); clientTest.setConnector(connector); clientTest.start(); Runtime.getRuntime().addShutdownHook(new Thread() {
public void run() { try { logger.info("## stop the canal client"); clientTest.stop(); } catch (Throwable e) { logger.warn("##something goes wrong when stopping canal:", e); } finally { logger.info("## canal client is down."); } }
}); }}
复制代码


可以看到,这个类中,使用的 destination 为 example。在这个类中,我们只需要将 IP 地址修改为 Canal Server 的 IP 即可。


具体为:将如下一行代码。


String ip = AddressUtils.getHostIp();
复制代码


修改为:


String ip = "192.168.175.100"
复制代码


由于我们在配置 Canal 时,没有指定用户名和密码,所以,我们还需要将如下代码。


CanalConnector connector = CanalConnectors.newSingleConnector(    new InetSocketAddress(ip, 11111),    destination,    "canal",    "canal");
复制代码


修改为:


CanalConnector connector = CanalConnectors.newSingleConnector(    new InetSocketAddress(ip, 11111),    destination,    "",    "");
复制代码


修改完成后,运行 main 方法启动程序。

测试数据变更

接下来,在 MySQL 中创建一个 canaldb 数据库。


create database canaldb;
复制代码


此时会在 IDEA 的命令行输出相关的日志信息。


***************************************************** Batch Id: [7] ,count : [3] , memsize : [149] , Time : 2020-08-05 23:25:35* Start : [mysql-bin.000007:6180:1540286735000(2020-08-05 23:25:35)] * End : [mysql-bin.000007:6356:1540286735000(2020-08-05 23:25:35)] ****************************************************
复制代码


接下来,我在 canaldb 数据库中创建数据表,并对数据表中的数据进行增删改查,程序输出的日志信息如下所示。


#在mysql进行数据变更后,这里会显示mysql的bin日志。***************************************************** Batch Id: [7] ,count : [3] , memsize : [149] , Time : 2020-08-05 23:25:35* Start : [mysql-bin.000007:6180:1540286735000(2020-08-05 23:25:35)] * End : [mysql-bin.000007:6356:1540286735000(2020-08-05 23:25:35)] ****************************************************
================> binlog[mysql-bin.000007:6180] , executeTime : 1540286735000(2020-08-05 23:25:35) , gtid : () , delay : 393ms BEGIN ----> Thread id: 43----------------> binlog[mysql-bin.000007:6311] , name[canal,canal_table] , eventType : DELETE , executeTime : 1540286735000(2020-08-05 23:25:35) , gtid : () , delay : 393 msid : 8 type=int(10) unsignedname : 512 type=varchar(255)---------------- END ----> transaction id: 249================> binlog[mysql-bin.000007:6356] , executeTime : 1540286735000(2020-08-05 23:25:35) , gtid : () , delay : 394ms
***************************************************** Batch Id: [8] ,count : [3] , memsize : [149] , Time : 2020-08-05 23:25:35* Start : [mysql-bin.000007:6387:1540286869000(2020-08-05 23:25:49)] * End : [mysql-bin.000007:6563:1540286869000(2020-08-05 23:25:49)] ****************************************************
================> binlog[mysql-bin.000007:6387] , executeTime : 1540286869000(2020-08-05 23:25:49) , gtid : () , delay : 976ms BEGIN ----> Thread id: 43----------------> binlog[mysql-bin.000007:6518] , name[canal,canal_table] , eventType : INSERT , executeTime : 1540286869000(2020-08-05 23:25:49) , gtid : () , delay : 976 msid : 21 type=int(10) unsigned update=truename : aaa type=varchar(255) update=true---------------- END ----> transaction id: 250================> binlog[mysql-bin.000007:6563] , executeTime : 1540286869000(2020-08-05 23:25:49) , gtid : () , delay : 977ms
***************************************************** Batch Id: [9] ,count : [3] , memsize : [161] , Time : 2020-08-05 23:26:22* Start : [mysql-bin.000007:6594:1540286902000(2020-08-05 23:26:22)] * End : [mysql-bin.000007:6782:1540286902000(2020-08-05 23:26:22)] ****************************************************
================> binlog[mysql-bin.000007:6594] , executeTime : 1540286902000(2020-08-05 23:26:22) , gtid : () , delay : 712ms BEGIN ----> Thread id: 43----------------> binlog[mysql-bin.000007:6725] , name[canal,canal_table] , eventType : UPDATE , executeTime : 1540286902000(2020-08-05 23:26:22) , gtid : () , delay : 712 msid : 21 type=int(10) unsignedname : aaac type=varchar(255) update=true---------------- END ----> transaction id: 252================> binlog[mysql-bin.000007:6782] , executeTime : 1540286902000(2020-08-05 23:26:22) , gtid : () , delay : 713ms
复制代码

数据同步实现

需求

将数据库数据的变化, 通过 canal 解析 binlog 日志, 实时更新到 solr 的索引库中。

具体实现

创建工程


创建 Maven 工程 mykit-canal-demo,并在 pom.xml 文件中添加如下配置。


<dependencies>    <dependency>        <groupId>com.alibaba.otter</groupId>        <artifactId>canal.client</artifactId>        <version>1.0.24</version>    </dependency>    <dependency>        <groupId>com.alibaba.otter</groupId>        <artifactId>canal.protocol</artifactId>        <version>1.0.24</version>    </dependency>    <dependency>        <groupId>commons-lang</groupId>        <artifactId>commons-lang</artifactId>        <version>2.6</version>    </dependency>    <dependency>        <groupId>org.codehaus.jackson</groupId>        <artifactId>jackson-mapper-asl</artifactId>        <version>1.8.9</version>    </dependency>
<dependency> <groupId>org.apache.solr</groupId> <artifactId>solr-solrj</artifactId> <version>4.10.3</version> </dependency> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <version>4.9</version> <scope>test</scope> </dependency>
</dependencies>
复制代码


创建 log4j 配置文件 xml


在工程的 src/main/resources 目录下创建 log4j.properties 文件,内容如下所示。


log4j.rootCategory=debug, CONSOLE
# CONSOLE is set to be a ConsoleAppender using a PatternLayout.log4j.appender.CONSOLE=org.apache.log4j.ConsoleAppenderlog4j.appender.CONSOLE.layout=org.apache.log4j.PatternLayoutlog4j.appender.CONSOLE.layout.ConversionPattern=%d{ISO8601} %-6r [%15.15t] %-5p %30.30c %x - %m\n
# LOGFILE is set to be a File appender using a PatternLayout.# log4j.appender.LOGFILE=org.apache.log4j.FileAppender# log4j.appender.LOGFILE.File=d:\axis.log# log4j.appender.LOGFILE.Append=true# log4j.appender.LOGFILE.layout=org.apache.log4j.PatternLayout# log4j.appender.LOGFILE.layout.ConversionPattern=%d{ISO8601} %-6r [%15.15t] %-5p %30.30c %x - %m\n
复制代码


创建实体类


在 io.mykit.canal.demo.bean 包下创建一个 Book 实体类,用于测试 Canal 的数据传输,如下所示。


package io.mykit.canal.demo.bean;import org.apache.solr.client.solrj.beans.Field;import java.util.Date;public class Book implements Serializable {    private static final long serialVersionUID = -6350345408771427834L;{
@Field("id") private Integer id;
@Field("book_name") private String name;
@Field("book_author") private String author;
@Field("book_publishtime") private Date publishtime;
@Field("book_price") private Double price;
@Field("book_publishgroup") private String publishgroup;
public Integer getId() { return id; }
public void setId(Integer id) { this.id = id; }
public String getName() { return name; }
public void setName(String name) { this.name = name; }
public String getAuthor() { return author; }
public void setAuthor(String author) { this.author = author; }
public Date getPublishtime() { return publishtime; }
public void setPublishtime(Date publishtime) { this.publishtime = publishtime; }
public Double getPrice() { return price; }
public void setPrice(Double price) { this.price = price; }
public String getPublishgroup() { return publishgroup; }
public void setPublishgroup(String publishgroup) { this.publishgroup = publishgroup; }
@Override public String toString() { return "Book{" + "id=" + id + ", name='" + name + '\'' + ", author='" + author + '\'' + ", publishtime=" + publishtime + ", price=" + price + ", publishgroup='" + publishgroup + '\'' + '}'; }}
复制代码


其中,我们在 Book 实体类中,使用 Solr 的注解 @Field 定义了实体类字段与 Solr 域之间的关系。


各种工具类的实现


接下来,我们就在 io.mykit.canal.demo.utils 包下创建各种工具类。


  • BinlogValue


用于存储 binlog 分析的每行每列的 value 值,代码如下所示。


package io.mykit.canal.demo.utils;import java.io.Serializable;/** *  * ClassName: BinlogValue <br/>  *  * binlog分析的每行每列的value值;<br> * 新增数据:beforeValue 和 value 均为现有值;<br> * 修改数据:beforeValue是修改前的值;value为修改后的值;<br> * 删除数据:beforeValue和value均是删除前的值; 这个比较特殊主要是为了删除数据时方便获取删除前的值<br> */public class BinlogValue implements Serializable {
private static final long serialVersionUID = -6350345408773943086L; private String value; private String beforeValue; /** * binlog分析的每行每列的value值;<br> * 新增数据: value:为现有值;<br> * 修改数据:value为修改后的值;<br> * 删除数据:value是删除前的值; 这个比较特殊主要是为了删除数据时方便获取删除前的值<br> */ public String getValue() { return value; } public void setValue(String value) { this.value = value; } /** * binlog分析的每行每列的beforeValue值;<br> * 新增数据:beforeValue为现有值;<br> * 修改数据:beforeValue是修改前的值;<br> * 删除数据:beforeValue为删除前的值; <br> */ public String getBeforeValue() { return beforeValue; } public void setBeforeValue(String beforeValue) { this.beforeValue = beforeValue; }}
复制代码


  • CanalDataParser


用于解析数据,代码如下所示。


package io.mykit.canal.demo.utils;
import java.text.SimpleDateFormat;import java.util.ArrayList;import java.util.Date;import java.util.HashMap;import java.util.List;import java.util.Map;
import org.apache.commons.lang.SystemUtils;import org.slf4j.Logger;import org.slf4j.LoggerFactory;import org.springframework.util.CollectionUtils;
import com.alibaba.otter.canal.protocol.Message;import com.alibaba.otter.canal.protocol.CanalEntry.Column;import com.alibaba.otter.canal.protocol.CanalEntry.Entry;import com.alibaba.otter.canal.protocol.CanalEntry.EntryType;import com.alibaba.otter.canal.protocol.CanalEntry.EventType;import com.alibaba.otter.canal.protocol.CanalEntry.RowChange;import com.alibaba.otter.canal.protocol.CanalEntry.RowData;import com.alibaba.otter.canal.protocol.CanalEntry.TransactionBegin;import com.alibaba.otter.canal.protocol.CanalEntry.TransactionEnd;import com.google.protobuf.InvalidProtocolBufferException;
/** * 解析数据 */public class CanalDataParser { protected static final String DATE_FORMAT = "yyyy-MM-dd HH:mm:ss"; protected static final String yyyyMMddHHmmss = "yyyyMMddHHmmss"; protected static final String yyyyMMdd = "yyyyMMdd"; protected static final String SEP = SystemUtils.LINE_SEPARATOR; protected static String context_format = null; protected static String row_format = null; protected static String transaction_format = null; protected static String row_log = null; private static Logger logger = LoggerFactory.getLogger(CanalDataParser.class); static { context_format = SEP + "****************************************************" + SEP; context_format += "* Batch Id: [{}] ,count : [{}] , memsize : [{}] , Time : {}" + SEP; context_format += "* Start : [{}] " + SEP; context_format += "* End : [{}] " + SEP; context_format += "****************************************************" + SEP;
row_format = SEP + "----------------> binlog[{}:{}] , name[{},{}] , eventType : {} , executeTime : {} , delay : {}ms" + SEP;
transaction_format = SEP + "================> binlog[{}:{}] , executeTime : {} , delay : {}ms" + SEP;
row_log = "schema[{}], table[{}]"; }
public static List<InnerBinlogEntry> convertToInnerBinlogEntry(Message message) { List<InnerBinlogEntry> innerBinlogEntryList = new ArrayList<InnerBinlogEntry>(); if(message == null) { logger.info("接收到空的 message; 忽略"); return innerBinlogEntryList; } long batchId = message.getId(); int size = message.getEntries().size(); if (batchId == -1 || size == 0) { logger.info("接收到空的message[size=" + size + "]; 忽略"); return innerBinlogEntryList; }
printLog(message, batchId, size); List<Entry> entrys = message.getEntries();
//输出日志 for (Entry entry : entrys) { long executeTime = entry.getHeader().getExecuteTime(); long delayTime = new Date().getTime() - executeTime; if (entry.getEntryType() == EntryType.TRANSACTIONBEGIN || entry.getEntryType() == EntryType.TRANSACTIONEND) { if (entry.getEntryType() == EntryType.TRANSACTIONBEGIN) { TransactionBegin begin = null; try { begin = TransactionBegin.parseFrom(entry.getStoreValue()); } catch (InvalidProtocolBufferException e) { throw new RuntimeException("parse event has an error , data:" + entry.toString(), e); } // 打印事务头信息,执行的线程id,事务耗时 logger.info("BEGIN ----> Thread id: {}", begin.getThreadId()); logger.info(transaction_format, new Object[] {entry.getHeader().getLogfileName(), String.valueOf(entry.getHeader().getLogfileOffset()), String.valueOf(entry.getHeader().getExecuteTime()), String.valueOf(delayTime) });
} else if (entry.getEntryType() == EntryType.TRANSACTIONEND) { TransactionEnd end = null; try { end = TransactionEnd.parseFrom(entry.getStoreValue()); } catch (InvalidProtocolBufferException e) { throw new RuntimeException("parse event has an error , data:" + entry.toString(), e); } // 打印事务提交信息,事务id logger.info("END ----> transaction id: {}", end.getTransactionId()); logger.info(transaction_format, new Object[] {entry.getHeader().getLogfileName(), String.valueOf(entry.getHeader().getLogfileOffset()), String.valueOf(entry.getHeader().getExecuteTime()), String.valueOf(delayTime) }); } continue; }
//解析结果 if (entry.getEntryType() == EntryType.ROWDATA) { RowChange rowChage = null; try { rowChage = RowChange.parseFrom(entry.getStoreValue()); } catch (Exception e) { throw new RuntimeException("parse event has an error , data:" + entry.toString(), e); }
EventType eventType = rowChage.getEventType();
logger.info(row_format, new Object[] { entry.getHeader().getLogfileName(), String.valueOf(entry.getHeader().getLogfileOffset()), entry.getHeader().getSchemaName(), entry.getHeader().getTableName(), eventType, String.valueOf(entry.getHeader().getExecuteTime()), String.valueOf(delayTime) });
//组装数据结果 if (eventType == EventType.INSERT || eventType == EventType.DELETE || eventType == EventType.UPDATE) { String schemaName = entry.getHeader().getSchemaName(); String tableName = entry.getHeader().getTableName(); List<Map<String, BinlogValue>> rows = parseEntry(entry);
InnerBinlogEntry innerBinlogEntry = new InnerBinlogEntry(); innerBinlogEntry.setEntry(entry); innerBinlogEntry.setEventType(eventType); innerBinlogEntry.setSchemaName(schemaName); innerBinlogEntry.setTableName(tableName.toLowerCase()); innerBinlogEntry.setRows(rows);
innerBinlogEntryList.add(innerBinlogEntry); } else { logger.info(" 存在 INSERT INSERT UPDATE 操作之外的SQL [" + eventType.toString() + "]"); } continue; } } return innerBinlogEntryList; }
private static List<Map<String, BinlogValue>> parseEntry(Entry entry) { List<Map<String, BinlogValue>> rows = new ArrayList<Map<String, BinlogValue>>(); try { String schemaName = entry.getHeader().getSchemaName(); String tableName = entry.getHeader().getTableName(); RowChange rowChage = RowChange.parseFrom(entry.getStoreValue()); EventType eventType = rowChage.getEventType();
// 处理每个Entry中的每行数据 for (RowData rowData : rowChage.getRowDatasList()) { StringBuilder rowlog = new StringBuilder("rowlog schema[" + schemaName + "], table[" + tableName + "], event[" + eventType.toString() + "]"); Map<String, BinlogValue> row = new HashMap<String, BinlogValue>(); List<Column> beforeColumns = rowData.getBeforeColumnsList(); List<Column> afterColumns = rowData.getAfterColumnsList(); beforeColumns = rowData.getBeforeColumnsList(); if (eventType == EventType.DELETE) {//delete for(Column column : beforeColumns) { BinlogValue binlogValue = new BinlogValue(); binlogValue.setValue(column.getValue()); binlogValue.setBeforeValue(column.getValue()); row.put(column.getName(), binlogValue); } } else if(eventType == EventType.UPDATE) {//update for(Column column : beforeColumns) { BinlogValue binlogValue = new BinlogValue(); binlogValue.setBeforeValue(column.getValue()); row.put(column.getName(), binlogValue); } for(Column column : afterColumns) { BinlogValue binlogValue = row.get(column.getName()); if(binlogValue == null) { binlogValue = new BinlogValue(); } binlogValue.setValue(column.getValue()); row.put(column.getName(), binlogValue); } } else { // insert for(Column column : afterColumns) { BinlogValue binlogValue = new BinlogValue(); binlogValue.setValue(column.getValue()); binlogValue.setBeforeValue(column.getValue()); row.put(column.getName(), binlogValue); } } rows.add(row); String rowjson = JacksonUtil.obj2str(row); logger.info("#################################### Data Parse Result ####################################"); logger.info(rowlog + " , " + rowjson); logger.info("#################################### Data Parse Result ####################################"); logger.info(""); } } catch (InvalidProtocolBufferException e) { throw new RuntimeException("parseEntry has an error , data:" + entry.toString(), e); } return rows; }
private static void printLog(Message message, long batchId, int size) { long memsize = 0; for (Entry entry : message.getEntries()) { memsize += entry.getHeader().getEventLength(); }
String startPosition = null; String endPosition = null; if (!CollectionUtils.isEmpty(message.getEntries())) { startPosition = buildPositionForDump(message.getEntries().get(0)); endPosition = buildPositionForDump(message.getEntries().get(message.getEntries().size() - 1)); }
SimpleDateFormat format = new SimpleDateFormat(DATE_FORMAT); logger.info(context_format, new Object[] {batchId, size, memsize, format.format(new Date()), startPosition, endPosition }); }
private static String buildPositionForDump(Entry entry) { long time = entry.getHeader().getExecuteTime(); Date date = new Date(time); SimpleDateFormat format = new SimpleDateFormat(DATE_FORMAT); return entry.getHeader().getLogfileName() + ":" + entry.getHeader().getLogfileOffset() + ":" + entry.getHeader().getExecuteTime() + "(" + format.format(date) + ")"; }}
复制代码


  • DateUtils


时间工具类,代码如下所示。


package io.mykit.canal.demo.utils;
import java.text.ParseException;import java.text.SimpleDateFormat;import java.util.Date;
public class DateUtils { private static final String FORMAT_PATTERN = "yyyy-MM-dd HH:mm:ss"; private static SimpleDateFormat sdf = new SimpleDateFormat(FORMAT_PATTERN); public static Date parseDate(String datetime) throws ParseException{ if(datetime != null && !"".equals(datetime)){ return sdf.parse(datetime); } return null; } public static String formatDate(Date datetime) throws ParseException{ if(datetime != null ){ return sdf.format(datetime); } return null; } public static Long formatStringDateToLong(String datetime) throws ParseException{ if(datetime != null && !"".equals(datetime)){ Date d = sdf.parse(datetime); return d.getTime(); } return null; } public static Long formatDateToLong(Date datetime) throws ParseException{ if(datetime != null){ return datetime.getTime(); } return null; }}
复制代码


  • InnerBinlogEntry


Binlog 实体类,代码如下所示。


package io.mykit.canal.demo.utils;
import java.util.ArrayList;import java.util.List;import java.util.Map;
import com.alibaba.otter.canal.protocol.CanalEntry.Entry;import com.alibaba.otter.canal.protocol.CanalEntry.EventType;
public class InnerBinlogEntry { /** * canal原生的Entry */ private Entry entry; /** * 该Entry归属于的表名 */ private String tableName; /** * 该Entry归属数据库名 */ private String schemaName; /** * 该Entry本次的操作类型,对应canal原生的枚举;EventType.INSERT; EventType.UPDATE; EventType.DELETE; */ private EventType eventType; private List<Map<String, BinlogValue>> rows = new ArrayList<Map<String, BinlogValue>>(); public Entry getEntry() { return entry; } public void setEntry(Entry entry) { this.entry = entry; } public String getTableName() { return tableName; } public void setTableName(String tableName) { this.tableName = tableName; } public EventType getEventType() { return eventType; } public void setEventType(EventType eventType) { this.eventType = eventType; } public String getSchemaName() { return schemaName; } public void setSchemaName(String schemaName) { this.schemaName = schemaName; } public List<Map<String, BinlogValue>> getRows() { return rows; } public void setRows(List<Map<String, BinlogValue>> rows) { this.rows = rows; }}
复制代码


  • JacksonUtil


Json 工具类,代码如下所示。


package io.mykit.canal.demo.utils;
import java.io.IOException;import org.codehaus.jackson.JsonGenerationException;import org.codehaus.jackson.JsonParseException;import org.codehaus.jackson.map.JsonMappingException;import org.codehaus.jackson.map.ObjectMapper;

public class JacksonUtil { private static ObjectMapper mapper = new ObjectMapper();
public static String obj2str(Object obj) { String json = null; try { json = mapper.writeValueAsString(obj); } catch (JsonGenerationException e) { e.printStackTrace(); } catch (JsonMappingException e) { e.printStackTrace(); } catch (IOException e) { e.printStackTrace(); } return json; }
public static <T> T str2obj(String content, Class<T> valueType) { try { return mapper.readValue(content, valueType); } catch (JsonParseException e) { e.printStackTrace(); } catch (JsonMappingException e) { e.printStackTrace(); } catch (IOException e) { e.printStackTrace(); } return null; }}
复制代码


同步程序的实现


准备好实体类和工具类后,我们就可以编写同步程序来实现 MySQL 数据库中的数据实时同步到 Solr 索引库了,我们在 io.mykit.canal.demo.main 包中常见 MykitCanalDemoSync 类,代码如下所示。


package io.mykit.canal.demo.main;
import io.mykit.canal.demo.bean.Book;import io.mykit.canal.demo.utils.BinlogValue;import io.mykit.canal.demo.utils.CanalDataParser;import io.mykit.canal.demo.utils.DateUtils;import io.mykit.canal.demo.utils.InnerBinlogEntry;import com.alibaba.otter.canal.client.CanalConnector;import com.alibaba.otter.canal.client.CanalConnectors;import com.alibaba.otter.canal.protocol.CanalEntry;import com.alibaba.otter.canal.protocol.Message;import org.apache.solr.client.solrj.SolrServer;import org.apache.solr.client.solrj.impl.HttpSolrServer;import org.slf4j.Logger;import org.slf4j.LoggerFactory;
import java.net.InetSocketAddress;import java.text.ParseException;import java.util.List;import java.util.Map;
public class SyncDataBootStart {
private static Logger logger = LoggerFactory.getLogger(SyncDataBootStart.class);
public static void main(String[] args) throws Exception {
String hostname = "192.168.175.100"; Integer port = 11111; String destination = "example";
//获取CanalServer 连接 CanalConnector canalConnector = CanalConnectors.newSingleConnector(new InetSocketAddress(hostname, port), destination, "", "");
//连接CanalServer canalConnector.connect();
//订阅Destination canalConnector.subscribe();
//轮询拉取数据 Integer batchSize = 5*1024; while (true){ Message message = canalConnector.getWithoutAck(batchSize);
long messageId = message.getId(); int size = message.getEntries().size();
if(messageId == -1 || size == 0){ try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } }else{ //进行数据同步 //1. 解析Message对象 List<InnerBinlogEntry> innerBinlogEntries = CanalDataParser.convertToInnerBinlogEntry(message);
//2. 将解析后的数据信息 同步到Solr的索引库中. syncDataToSolr(innerBinlogEntries); }
//提交确认 canalConnector.ack(messageId);
}
} private static void syncDataToSolr(List<InnerBinlogEntry> innerBinlogEntries) throws Exception { //获取solr的连接 SolrServer solrServer = new HttpSolrServer("http://192.168.175.101:8080/solr");
//遍历数据集合 , 根据数据集合中的数据信息, 来决定执行增加, 修改 , 删除操作 . if(innerBinlogEntries != null){ for (InnerBinlogEntry innerBinlogEntry : innerBinlogEntries) {
CanalEntry.EventType eventType = innerBinlogEntry.getEventType();
//如果是Insert, update , 则需要同步数据到 solr 索引库 if(eventType == CanalEntry.EventType.INSERT || eventType == CanalEntry.EventType.UPDATE){ List<Map<String, BinlogValue>> rows = innerBinlogEntry.getRows(); if(rows != null){ for (Map<String, BinlogValue> row : rows) { BinlogValue id = row.get("id"); BinlogValue name = row.get("name"); BinlogValue author = row.get("author"); BinlogValue publishtime = row.get("publishtime"); BinlogValue price = row.get("price"); BinlogValue publishgroup = row.get("publishgroup");
Book book = new Book(); book.setId(Integer.parseInt(id.getValue())); book.setName(name.getValue()); book.setAuthor(author.getValue()); book.setPrice(Double.parseDouble(price.getValue())); book.setPublishgroup(publishgroup.getValue()); book.setPublishtime(DateUtils.parseDate(publishtime.getValue()));

//导入数据到solr索引库 solrServer.addBean(book); solrServer.commit(); } }
}else if(eventType == CanalEntry.EventType.DELETE){ //如果是Delete操作, 则需要删除solr索引库中的数据 . List<Map<String, BinlogValue>> rows = innerBinlogEntry.getRows(); if(rows != null){ for (Map<String, BinlogValue> row : rows) { BinlogValue id = row.get("id");
//根据ID删除solr的索引库 solrServer.deleteById(id.getValue()); solrServer.commit(); } }
} } } }}
复制代码


接下来,启动 SyncDataBootStart 类的 main 方法,监听 Canal Server,而 Canal Server 监听 MySQL binlog 的日志变化,一旦 MySQL 的 binlog 日志发生变化,则 SyncDataBootStart 会立刻收到变更信息,并将变更信息解析成 Book 对象实时更新到 Solr 库中。如果在 MySQL 数据库中删除了数据,则也会实时删除 Solr 库中的数据。


部分参考 Canal 官方文档:https://github.com/alibaba/canal

推荐阅读


好了,今天就到这儿吧,我是冰河,大家有啥问题可以在下方留言,一起进阶,一起进大厂~

发布于: 12 分钟前阅读数: 3
用户头像

冰河

关注

公众号:冰河技术 2020.05.29 加入

互联网高级技术专家,《深入理解分布式事务:原理与实战》,《海量数据处理与大数据技术实战》和《MySQL技术大全:开发、优化与运维实战》作者,mykit-data与mykit-transaction-message框架作者。【冰河技术】作者。

评论

发布
暂无评论
万字长文解密数据异构最佳实践(含完整代码实现)!!