写点什么

巧用 redis 实现点赞功能,它不比 mysql 香吗?

作者:阿Q说代码
  • 2022 年 6 月 27 日
  • 本文字数:3720 字

    阅读完需:约 12 分钟

巧用redis实现点赞功能,它不比mysql香吗?

提到点赞,大家一想到的是不是就是朋友圈的点赞呀?其实点赞对我们来说并不陌生,我们经常会在手机软件或者网页中看到它,今天就让我们来了解一下它的实现吧。我们常见的设计思路大概分为两种:一种自然是用 MySQL 等数据库直接落地存储, 另外一种就是将点赞的数据保存到 Redis 等缓存里,在一定时间后刷回 MySQL 等数据库。


首先我们来说一下两种方法各自的优缺点:我们以 MySQL 和 Redis 为例。


1、直接写入数据库:


优点: 这种方法实现简单,只需完成数据库的增删改查就行;


缺点: 数据库读写压力大,如果遇到热门文章在短时间内被大量点赞的情况,直接操作数据库会给数据库带来巨大压力,影响效率。


2、使用 Redis 缓存:


优点: 性能高,读写速度快,缓解数据库读写的压力;


缺点: 开发复杂,不能保证数据安全性即 redis 挂掉的时候会丢失数据, 同时不及时同步 redis 中的数据, 可能会在 redis 内存置换的时候被淘汰掉。不过对于点赞数据我们不需要那么精确,丢失一点数据问题不大。


接下来就从以下三个方面对点赞功能做详细的介绍


•Redis 缓存设计•数据库设计•开启定时任务持久化存储到数据库


1、Redis 缓存设计及实现


Redis 的整合我们在上一篇文章中已经介绍过了,此处就不再赘述了。我们了解到,我们在做点赞的时候需要记录以下几类数据:一类是某用户被其他用户点赞的详细记录,一类是。考虑到查询与存取方便快捷,我这边采用 Hash 结构进行存储,存储结构如下:


(1)某用户被其他用户点赞的详细记录:MAP_USER_LIKED为键值,被点赞用户id::点赞用户id为 filed,1或者0为 value


(2)某用户被点赞的数量统计:MAP_USER_LIKED_COUNT为键值,被点赞用户id为 filed,count为 value


部分代码如下:


/*** 将用户被其他用户点赞的数据存到redis*/@Overridepublic void saveLiked2Redis(String likedUserId, String likedPostId) {    String key = RedisKeyUtils.getLikedKey(likedUserId, likedPostId);    redisTemplate.opsForHash().put(RedisKeyUtils.MAP_KEY_USER_LIKED,key, LikedStatusEnum.LIKE.getCode());}
//取消点赞@Overridepublic void unlikeFromRedis(String likedUserId, String likedPostId) { String key = RedisKeyUtils.getLikedKey(likedUserId, likedPostId); redisTemplate.opsForHash().put(RedisKeyUtils.MAP_KEY_USER_LIKED,key,LikedStatusEnum.UNLIKE.getCode());}
/*** 将被点赞用户的数量+1*/@Overridepublic void incrementLikedCount(String likedUserId) { redisTemplate.opsForHash().increment(RedisKeyUtils.MAP_KEY_USER_LIKED_COUNT,likedUserId,1);}
//-1@Overridepublic void decrementLikedCount(String likedUserId) { redisTemplate.opsForHash().increment(RedisKeyUtils.MAP_KEY_USER_LIKED_COUNT, likedUserId, -1);}
/*** 获取Redis中的用户点赞详情记录*/@Overridepublic List<UserLikeDetail> getLikedDataFromRedis() { Cursor<Map.Entry<Object,Object>> scan = redisTemplate.opsForHash().scan(RedisKeyUtils.MAP_KEY_USER_LIKED, ScanOptions.NONE); List<UserLikeDetail> list = new ArrayList<>(); while (scan.hasNext()){ Map.Entry<Object, Object> entry = scan.next(); String key = (String) entry.getKey(); String[] split = key.split("::"); String likedUserId = split[0]; String likedPostId = split[1]; Integer value = (Integer) entry.getValue(); //组装成 UserLike 对象 UserLikeDetail userLikeDetail = new UserLikeDetail(likedUserId, likedPostId, value); list.add(userLikeDetail); //存到 list 后从 Redis 中删除 redisTemplate.opsForHash().delete(RedisKeyUtils.MAP_KEY_USER_LIKED, key); } return list;}
/*** 获取Redis中的用户被点赞数量*/@Overridepublic List<UserLikCountDTO> getLikedCountFromRedis() { Cursor<Map.Entry<Object,Object>> cursor = redisTemplate.opsForHash().scan(RedisKeyUtils.MAP_KEY_USER_LIKED_COUNT, ScanOptions.NONE); List<UserLikCountDTO> list = new ArrayList<>(); while(cursor.hasNext()){ Map.Entry<Object, Object> map = cursor.next(); String key = (String) map.getKey(); Integer value = (Integer) map.getValue(); UserLikCountDTO userLikCountDTO = new UserLikCountDTO(key,value); list.add(userLikCountDTO); //存到 list 后从 Redis 中删除 redisTemplate.opsForHash().delete(RedisKeyUtils.MAP_KEY_USER_LIKED_COUNT,key); } return list;}
复制代码


Redis 存储结构如图




2、数据库设计


这里我们可以和直接将点赞数据存到数据库一样,设计两张表:


(1)用户被其他用户点赞的详细记录:user_like_detail


DROP TABLE IF EXISTS `user_like_detail`;CREATE TABLE `user_like_detail`  (  `id` int(11) NOT NULL AUTO_INCREMENT,  `liked_user_id` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '被点赞的用户id',  `liked_post_id` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '点赞的用户id',  `status` tinyint(1) NULL DEFAULT 1 COMMENT '点赞状态,0取消,1点赞',  `create_time` timestamp(0) NOT NULL DEFAULT CURRENT_TIMESTAMP(0) COMMENT '创建时间',  `update_time` timestamp(0) NOT NULL DEFAULT CURRENT_TIMESTAMP(0) ON UPDATE CURRENT_TIMESTAMP(0) COMMENT '修改时间',  PRIMARY KEY (`id`) USING BTREE,  INDEX `liked_user_id`(`liked_user_id`) USING BTREE,  INDEX `liked_post_id`(`liked_post_id`) USING BTREE) ENGINE = InnoDB AUTO_INCREMENT = 7 CHARACTER SET = utf8 COLLATE = utf8_general_ci COMMENT = '用户点赞表' ROW_FORMAT = Dynamic;
SET FOREIGN_KEY_CHECKS = 1;
复制代码


(2)用户被点赞的数量统计:user_like_count


DROP TABLE IF EXISTS `user_like_count`;CREATE TABLE `user_like_count`  (  `id` int(11) NOT NULL AUTO_INCREMENT,  `like_num` int(11) NULL DEFAULT 0,  PRIMARY KEY (`id`) USING BTREE) ENGINE = InnoDB AUTO_INCREMENT = 7 CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;
SET FOREIGN_KEY_CHECKS = 1;
复制代码


3、开启定时任务持久化存储到数据库


我们使用 Quartz 来实现定时任务,将 Redis 中的数据存储到数据库中,为了演示效果,我们可以设置一分钟或者两分钟存储一遍数据,这个视具体业务而定。在同步数据的过程中,我们首先要将 Redis 中的数据在数据库中进行查重,舍弃重复数据,这样我们的数据才会更加准确。


部分代码如下


//同步redis的用户点赞数据到数据库@Override@Transactionalpublic void transLikedFromRedis2DB() {    List<UserLikeDetail> list = redisService.getLikedDataFromRedis();    list.stream().forEach(item->{        //查重        UserLikeDetail userLikeDetail = userLikeDetailMapper.selectOne(new LambdaQueryWrapper<UserLikeDetail>()           .eq(UserLikeDetail::getLikedUserId, item.getLikedUserId())           .eq(UserLikeDetail::getLikedPostId, item.getLikedPostId()));        if (userLikeDetail == null){            userLikeDetail = new UserLikeDetail();            BeanUtils.copyProperties(item, userLikeDetail);            //没有记录,直接存入            userLikeDetail.setCreateTime(LocalDateTime.now());            userLikeDetailMapper.insert(userLikeDetail);        }else{            //有记录,需要更新            userLikeDetail.setStatus(item.getStatus());            userLikeDetail.setUpdateTime(LocalDateTime.now());            userLikeDetailMapper.updateById(item);        }    });}
@Override@Transactionalpublic void transLikedCountFromRedis2DB() { List<UserLikCountDTO> list = redisService.getLikedCountFromRedis(); list.stream().forEach(item->{ UserLikeCount user = userLikeCountMapper.selectById(item.getKey()); //点赞数量属于无关紧要的操作,出错无需抛异常 if (user != null){ Integer likeNum = user.getLikeNum() + item.getValue(); user.setLikeNum(likeNum); //更新点赞数量 userLikeCountMapper.updateById(user); } });}
复制代码


至此我们就实现了基于 Redis 的点赞功能,我们还需要注意一点:查询用户点赞情况时,需要同时查询数据库+缓存中的数据。


阿 Q 将持续更新 java 实战方面的文章,如果你有不同的意见或者更好的 idea,欢迎联系阿 Q。


【阿 Q 说代码】,值得关注的公众号

文章风格多变,配图通俗易懂,故事生动有趣,来聊聊技术呀!

发布于: 2022 年 06 月 27 日阅读数: 53
用户头像

阿Q说代码

关注

公众号:阿Q说代码 | 🏆 签约作者 🏆 2021.06.08 加入

目前就职于世界五百强企业公司,担任技术leader,文章风格多变,配图通俗易懂,故事生动有趣!

评论

发布
暂无评论
巧用redis实现点赞功能,它不比mysql香吗?_MySQL_阿Q说代码_InfoQ写作社区