Hadoop 入门教程
Hadoop 教程
1. 前期准备
IDEA 安装
JDK 安装
IDEA 中 JDK 配置
VMware 安装
Hadoop 虚拟机
待补充
2. HDFS 启动
cd app/hadoop-2.6.0-cdh5.7.0/sbin/
./start-dfs.sh
3. Hadoop 启动失败解决方法
重新编辑本机的 hosts 文件
sudo vim /etc/hosts
将
hadoop000
与localhost
均改为本机 ip
4. Hadoop Shell 命令
浏览器可视化文件系统
路径遍历
hadoop fs -ls [路径]
查看文件
hadoop fs -cat [文件路径]
eg:hadoop fs -cat /hadoopruochen/test/ruochen.txt
新建文件夹
hadoop fs -mkdir -p [路径]
-p:递归新建
eg:hadoop fs -mkdir -p /hadoopruochen/test
传文件到 Hadoop
hadoop fs -put [文件路径] [hadoop 路径]
eg:hadoop fs -put ruochen.txt /hadoopruochen/test
下载 Hadoop 文件到本地
hadoop fs -get [hadoop 文件路径] [本地路径]
eg:hadoop fs -get /hadoopruochen/test/ruochen.txt haha.txt
移动文件
hadoop fs -mv [源路径] [目的路径]
eg:hadoop fs -mv /hadoopruochen/test/ruochen.txt /user
删除文件
hadoop fs -rm [-r] [文件]
eg:hadoop fs -rm /hadoopruochen
eg:hadoop fs -rm -r /hadoopruochen
5. Java 操作 HDFS API
5.1. 新建项目
新建一个空项目,我这里起名为
BigData
新建一个 module
Finish 即可
pom.xml
如下
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.neusoft</groupId>
<artifactId>hadoopdemo</artifactId>
<version>1.0-SNAPSHOT</version>
<name>hadoopdemo</name>
<!-- FIXME change it to the project's website -->
<url>http://www.example.com</url>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<maven.compiler.source>1.7</maven.compiler.source>
<maven.compiler.target>1.7</maven.compiler.target>
<hadoop.version>2.6.0-cdh5.7.0</hadoop.version>
</properties>
<repositories>
<repository>
<id>cloudera</id>
<url>https://repository.cloudera.com/artifactory/cloudera-repos/</url>
</repository>
</repositories>
<dependencies>
<!-- 添加hadoop依赖-->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>${hadoop.version}</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.11</version>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<pluginManagement><!-- lock down plugins versions to avoid using Maven defaults (may be moved to parent pom) -->
<plugins>
<!-- clean lifecycle, see https://maven.apache.org/ref/current/maven-core/lifecycles.html#clean_Lifecycle -->
<plugin>
<artifactId>maven-clean-plugin</artifactId>
<version>3.1.0</version>
</plugin>
<!-- default lifecycle, jar packaging: see https://maven.apache.org/ref/current/maven-core/default-bindings.html#Plugin_bindings_for_jar_packaging -->
<plugin>
<artifactId>maven-resources-plugin</artifactId>
<version>3.0.2</version>
</plugin>
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.8.0</version>
</plugin>
<plugin>
<artifactId>maven-surefire-plugin</artifactId>
<version>2.22.1</version>
</plugin>
<plugin>
<artifactId>maven-jar-plugin</artifactId>
<version>3.0.2</version>
</plugin>
<plugin>
<artifactId>maven-install-plugin</artifactId>
<version>2.5.2</version>
</plugin>
<plugin>
<artifactId>maven-deploy-plugin</artifactId>
<version>2.8.2</version>
</plugin>
<!-- site lifecycle, see https://maven.apache.org/ref/current/maven-core/lifecycles.html#site_Lifecycle -->
<plugin>
<artifactId>maven-site-plugin</artifactId>
<version>3.7.1</version>
</plugin>
<plugin>
<artifactId>maven-project-info-reports-plugin</artifactId>
<version>3.0.0</version>
</plugin>
</plugins>
</pluginManagement>
</build>
</project>
5.2. 测试
5.2.1 新建文件夹
接下来,我们使用 Java 连接 hdfs,并新建一个文件夹
在 test 下新建
HDFSApp.java
,如下通过测试方法连接 HDFS,并新建一个
/ruochen/test2
文件夹,代码如下
package com.neusoft.hdfs;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;
import org.apache.hadoop.conf.Configuration;
import java.net.URI;
public class HDFSApp {
Configuration configuration = null;
FileSystem fileSystem = null;
public static final String HDFS_PATH = "hdfs://192.168.10.128:8020";
@Test
public void mkdir() throws Exception {
fileSystem.mkdirs(new Path("/ruochen/test2"));
}
// Java 连接hdfs 需要先建立一个连接
// 测试方法执行之前要执行的操作
@Before
public void setUp() throws Exception {
System.out.println("开始建立与HDFS的连接");
configuration = new Configuration();
fileSystem = FileSystem.get(new URI(HDFS_PATH), configuration, "hadoop");
}
// 测试之后要执行的代码
@After
public void tearDown() {
configuration = null;
fileSystem = null;
System.out.println("关闭与HDFS的连接");
}
}
然后运行
mkdir()
函数,运行完后我们可以看到已经新建了一个文件夹
5.2.2 新建文件
新建文件代码如下
// 创建文件
@Test
public void create() throws Exception {
Path path = new Path("/ruochen/test1/hello.txt");
FSDataOutputStream outputStream = fileSystem.create(path);
outputStream.write("hello world".getBytes());
outputStream.flush();
outputStream.close();
}
运行结束后,我们通过 shell 脚本查看一下
5.2.3 修改文件名称
Java 代码如下
// rename文件
@Test
public void rename() throws Exception {
Path oldPath = new Path("/ruochen/test1/hello.txt");
Path newPath = new Path("/ruochen/test1/xixi.txt");
fileSystem.rename(oldPath, newPath);
}
运行结果如下
5.2.4 查看文件
Java 代码如下
// 查看文件
@Test
public void cat() throws Exception {
Path path = new Path("/ruochen/test1/xixi.txt");
FSDataInputStream inputStream = fileSystem.open(path);
IOUtils.copyBytes(inputStream, System.out, 1024);
inputStream.close();
}
运行结果
5.2.5 上传文件
Java 代码如下
// 上传文件
@Test
public void upload() throws Exception {
Path localPath = new Path("cifar-10-python.tar.gz");
Path hdfsPath = new Path("/");
fileSystem.copyFromLocalFile(localPath, hdfsPath);
}
运行完成后,我们可以看到 hdfs 已经成功显示刚才上传的文件
5.2.6 下载文件
Java 代码
// 下载文件
@Test
public void download() throws Exception {
Path hdfsPath = new Path("/hadoop-2.6.0-cdh5.7.0.tar.gz");
Path localPath = new Path("./down/hadoop-2.6.0-cdh5.7.0.tar.gz");
fileSystem.copyToLocalFile(false, hdfsPath, localPath, true);
}
运行完后我们可以看到当前目录 down 下已经有了刚刚下载的文件
6. Java 实现 WordCount
这里要注意在
main
下操作,test
下是用来测试的
新建一个
WordCountApp
类Java 代码如下
package com.neusoft;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
/**
* 词频统计
*/
public class WordCountApp {
/**
* map 阶段
*/
public static class MyMapper extends Mapper<LongWritable, Text, Text, LongWritable> {
LongWritable one = new LongWritable(1);
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
// 分
String line = value.toString();
// 拆分
String[] s = line.split(" ");
for (String word : s) {
// 输出
context.write(new Text(word), one);
}
}
}
/**
* reduce 阶段
*/
public static class MyReducer extends Reducer<Text, LongWritable, Text, LongWritable> {
@Override
protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
long sum = 0;
// 合并统计
for (LongWritable value : values) {
// 求和
sum += value.get();
}
context.write(key, new LongWritable(sum));
}
}
public static void main(String[] args) throws Exception {
Configuration configuration = new Configuration();
Job job = Job.getInstance(configuration, "wordcount");
job.setJarByClass(WordCountApp.class);
// 设置 map 相关参数
FileInputFormat.setInputPaths(job, new Path(args[0]));
job.setMapperClass(MyMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(LongWritable.class);
// 设置 reduce 相关参数
job.setReducerClass(MyReducer.class);
job.setOutputKeyClass(MyReducer.class);
job.setOutputValueClass(LongWritable.class);
Path outPath = new Path(args[1]);
FileSystem fileSystem = FileSystem.get(configuration);
if (fileSystem.exists(outPath)) {
// 删除文件
fileSystem.delete(outPath, true);
System.out.println("输出路径已存在, 已被删除");
}
FileOutputFormat.setOutputPath(job, outPath);
// 控制台输出详细信息
// 输出:1 不输出:0
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
打包程序
打包完成后,将 jar 包上传到 hadoop 虚拟机
首先通过 shell 命令将输出文件夹删除,不然重复执行会报错
hadoop fs -rm -r /output/wc
然后执行下列操作
hadoop jar hadoopdemo-1.0-SNAPSHOT.jar com.neusoft.WordCountApp hdfs://hadoop000:8020/ruochenchen.txt hdfs://hadoop000:8020/output/wc
>hadoop jar hadoopdemo-1.0-SNAPSHOT.jar com.neusoft.WordCountApp `输入文件 ` `输出文件`
![在这里插入图片描述](https://img-blog.csdnimg.cn/20210610205833876.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzI5MzM5NDY3,size_16,color_FFFFFF,t_70)
然后我们可以看到作业中有显示
通过
cat
命令可以查看一下输出的文件
hadoop fs -cat /output/wc/part-r-00000
![在这里插入图片描述](https://img-blog.csdnimg.cn/20210610205941855.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzI5MzM5NDY3,size_16,color_FFFFFF,t_70)
版权声明: 本文为 InfoQ 作者【若尘】的原创文章。
原文链接:【http://xie.infoq.cn/article/92066647cef041d71c3d84f7d】。文章转载请联系作者。
若尘
还未添加个人签名 2021.01.11 加入
还未添加个人简介
评论