写点什么

MixNet 解析以及 pytorch 源码

作者:AI浩
  • 2022 年 6 月 01 日
  • 本文字数:9981 字

    阅读完需:约 33 分钟

摘要

MixConv 的主要思想是在单个深度卷积操作中混合多个不同大小的内核,以便它可以轻松地从输入图像中捕获不同类型的模式。 大核来捕获高分辨率的特征(我理解是全局的特征),又需要小核来捕获低分辨率的特征(我理解是图片的纹理特征),以提高模型的准确性和效率。网络结构如图:



这种特征拼接和 Inceptions 有很多相似的地方,但是卷积采用分组卷积的方式,所以参数的计算量比较小。想要理解 MixNet,首先要理解大小卷积核的优缺点,然后,理解分组卷积。


<div align=center><img src="https://gitee.com/wanghao1090220084/cloud-image/raw/master/img/e9e2ca751690421282ccae40058f42e2.jpeg" width="200"></div>

大卷积核与小卷积核

究竟是大卷积核好,还是小的卷积核好,这个大家一直在争论。CNN 的鼻祖 LeNet 和惊艳到大家的 AlexNet 都使用了大卷积核。后来,到 VGG 开始使用 3×3 的卷积核,再发展到 YOLOV4、5 里面使用了大量的 1×1 的卷积核。


卷积核越大,receptive field(感受野)越大,看到的图片信息越多,因此获得的特征越好。但是大的卷积核会导致计算量的暴增,不利于模型深度的增加,计算性能也会降低。


于是在 VGG、Inception 网络中,利用 2 个 3×3 卷积核的组合来代替 1 个 5×5 卷积核,感受野不变,计算量还得到降低。多个 3x3 的卷积层比一个大尺寸 filter卷积层有更多的非线性(更多层的非线性函数),使得判决函数更加具有判决性。


正因为这些因素,导致了人们越来越喜欢小卷积核。


最近,人们又开始重新审视大卷积核,比如 MixNet 使用了 3×3、5×5、7×7 和 9×9 等,还有更猛的 RepLKNet,直接使用 31×31 大小的卷积核。但是都不再是普通的卷积了,比如 MixNet 使用的是分组卷积,这样大大降低模型的计算量。

分组卷积

分组卷积则是对输入 feature map 进行分组,然后每组分别卷积。如下图:



分组卷积则是对输入 feature map 进行分组,然后每组分别卷积。


假设输入 feature map 的尺寸仍为,输出 feature map 的数量为个,如果设定要分成 G 个 groups,则每组的输入 feature map 数量为,每组的输出 feature map 数量为,每个卷积核的尺寸为,卷积核的总数仍为个,每组的卷积核数量为,卷积核只与其同组的输入 map 进行卷积,卷积核的总参数量为总参数量减少为原来的


计算量公式:



分组卷积的参数量为:



举例:


输入的尺寸是 227×227×3,卷积核大小是 11×11,输出是 6,输出维度是 55×55,group 为 3


我们带入公式可以计算出


参数量:


=726


运算量:


=2205225

MinNet 核心代码

mixnet_s 参数列表:


  mixnet_s = [(16,  16,  [3],              [1],    [1],    1, 1, 'ReLU',  0.0),                (16,  24,  [3],              [1, 1], [1, 1], 2, 6, 'ReLU',  0.0),                (24,  24,  [3],              [1, 1], [1, 1], 1, 3, 'ReLU',  0.0),                (24,  40,  [3, 5, 7],        [1],    [1],    2, 6, 'Swish', 0.5),                (40,  40,  [3, 5],           [1, 1], [1, 1], 1, 6, 'Swish', 0.5),                (40,  40,  [3, 5],           [1, 1], [1, 1], 1, 6, 'Swish', 0.5),                (40,  40,  [3, 5],           [1, 1], [1, 1], 1, 6, 'Swish', 0.5),                (40,  80,  [3, 5, 7],        [1],    [1, 1], 2, 6, 'Swish', 0.25),                (80,  80,  [3, 5],           [1],    [1, 1], 1, 6, 'Swish', 0.25),                (80,  80,  [3, 5],           [1],    [1, 1], 1, 6, 'Swish', 0.25),                (80,  120, [3, 5, 7],        [1, 1], [1, 1], 1, 6, 'Swish', 0.5),                (120, 120, [3, 5, 7, 9],     [1, 1], [1, 1], 1, 3, 'Swish', 0.5),                (120, 120, [3, 5, 7, 9],     [1, 1], [1, 1], 1, 3, 'Swish', 0.5),                (120, 200, [3, 5, 7, 9, 11], [1],    [1],    2, 6, 'Swish', 0.5),                (200, 200, [3, 5, 7, 9],     [1],    [1, 1], 1, 6, 'Swish', 0.5),                (200, 200, [3, 5, 7, 9],     [1],    [1, 1], 1, 6, 'Swish', 0.5)]
复制代码


列的含义

第一列:in_channels,输入的通道。

第二列:out_channels,输出的通道。

第三列:卷积核的大小。

第四列:信道扩张,应用在 MixNetBlock 的扩展阶段。

第五列:信道映射,应用在 MixNetBlock 的末尾,映射输出通道。

第六列:stride,特征图缩放的倍数。

第七列:信道扩张的倍数。

第八列:激活函数

第九列:SE 注意力机制放大的倍率。0 代表没有 SE。


行代表每个 MixNetBlock 的配置,MixNetBlock 的代码如下:


class MixNetBlock(nn.Module):    def __init__(            self,            in_channels,            out_channels,            kernel_size=[3],            expand_ksize=[1],            project_ksize=[1],            stride=1,            expand_ratio=1,            non_linear='ReLU',            se_ratio=0.0    ):        super(MixNetBlock, self).__init__()        expand = (expand_ratio != 1)        expand_channels = in_channels * expand_ratio        se = (se_ratio != 0.0)        self.residual_connection = (stride == 1 and in_channels == out_channels)        conv = []        if expand:            # 扩展阶段            pw_expansion = nn.Sequential(                GroupedConv2d(in_channels, expand_channels, expand_ksize),                nn.BatchNorm2d(expand_channels),                NON_LINEARITY[non_linear]            )            conv.append(pw_expansion)        # depthwise convolution phase        dw = nn.Sequential(            MDConv(expand_channels, kernel_size, stride),            nn.BatchNorm2d(expand_channels),            NON_LINEARITY[non_linear]        )        conv.append(dw)        if se:            # squeeze and excite            squeeze_excite = SqueezeAndExcite(expand_channels, in_channels, se_ratio)            conv.append(squeeze_excite)        # projection phase        pw_projection = nn.Sequential(            GroupedConv2d(expand_channels, out_channels, project_ksize),            nn.BatchNorm2d(out_channels)        )        conv.append(pw_projection)        self.conv = nn.Sequential(*conv)    def forward(self, x):        if self.residual_connection:            return x + self.conv(x)        else:            return self.conv(x)
复制代码


我们将网络打印出来,选择“(80, 120, [3, 5, 7], [1, 1], [1, 1], 1, 6, 'Swish', 0.5),”这组配置,结合 MixNetBlock 的代码来学习。


 (10): MixNetBlock(      (conv): Sequential(        (0): Sequential(          (0): GroupedConv2d(            (grouped_conv): ModuleList(              (0): Conv2d(40, 240, kernel_size=(1, 1), stride=(1, 1), bias=False)              (1): Conv2d(40, 240, kernel_size=(1, 1), stride=(1, 1), bias=False)            )          )          (1): BatchNorm2d(480, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)          (2): Swish(            (sigmoid): Sigmoid()          )        )        (1): Sequential(          (0): MDConv(            (mixed_depthwise_conv): ModuleList(              (0): Conv2d(160, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=160, bias=False)              (1): Conv2d(160, 160, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), groups=160, bias=False)              (2): Conv2d(160, 160, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), groups=160, bias=False)            )          )          (1): BatchNorm2d(480, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)          (2): Swish(            (sigmoid): Sigmoid()          )        )        (2): SqueezeAndExcite(          (se_reduce): Conv2d(480, 40, kernel_size=(1, 1), stride=(1, 1))          (non_linear1): Swish(            (sigmoid): Sigmoid()          )          (se_expand): Conv2d(40, 480, kernel_size=(1, 1), stride=(1, 1))          (non_linear2): Sigmoid()        )        (3): Sequential(          (0): GroupedConv2d(            (grouped_conv): ModuleList(              (0): Conv2d(240, 60, kernel_size=(1, 1), stride=(1, 1), bias=False)              (1): Conv2d(240, 60, kernel_size=(1, 1), stride=(1, 1), bias=False)            )          )          (1): BatchNorm2d(120, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)        )      )    )
复制代码


pw_expansion:通道扩展,将 80 个通道拆为两个 40 的 channel 作为卷积的输出,输入的 channel×expand_ratio 作为扩张的输出,然后拼接位 480channel 的特征图。

将 480 的 channel 拆解位 3 个 160 的 channel,分别输入到混合卷积中,混合卷积由 3×3、5×5 和 7×7 构成的分组卷积中,分组为 160,计算完成后拼接成 480channel 的特征图。

将特征图数据 SE 注意力中,计算完成后得到 480channel 的特征图。

最后,将 480channel 的特征图拆为两个 240 的特征图,分别输入到 1×1 的卷积中,得到 60channel 的特征图,然后,做拼接,得到 120channel 的特征图。

完整代码:

import math
import torchimport torch.nn as nnfrom torch.autograd import Variable

class Swish(nn.Module): def __init__(self): super(Swish, self).__init__()
self.sigmoid = nn.Sigmoid()
def forward(self, x): return x * self.sigmoid(x)

NON_LINEARITY = { 'ReLU': nn.ReLU(inplace=True), 'Swish': Swish(),}

def _RoundChannels(c, divisor=8, min_value=None): if min_value is None: min_value = divisor new_c = max(min_value, int(c + divisor / 2) // divisor * divisor) if new_c < 0.9 * c: new_c += divisor return new_c

def _SplitChannels(channels, num_groups): split_channels = [channels // num_groups for _ in range(num_groups)] split_channels[0] += channels - sum(split_channels) return split_channels

def Conv3x3Bn(in_channels, out_channels, stride, non_linear='ReLU'): return nn.Sequential( nn.Conv2d(in_channels, out_channels, 3, stride, 1, bias=False), nn.BatchNorm2d(out_channels), NON_LINEARITY[non_linear] )

def Conv1x1Bn(in_channels, out_channels, non_linear='ReLU'): return nn.Sequential( nn.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False), nn.BatchNorm2d(out_channels), NON_LINEARITY[non_linear] )

class SqueezeAndExcite(nn.Module): def __init__(self, channels, squeeze_channels, se_ratio): super(SqueezeAndExcite, self).__init__()
squeeze_channels = squeeze_channels * se_ratio if not squeeze_channels.is_integer(): raise ValueError('channels must be divisible by 1/ratio')
squeeze_channels = int(squeeze_channels) self.se_reduce = nn.Conv2d(channels, squeeze_channels, 1, 1, 0, bias=True) self.non_linear1 = NON_LINEARITY['Swish'] self.se_expand = nn.Conv2d(squeeze_channels, channels, 1, 1, 0, bias=True) self.non_linear2 = nn.Sigmoid()
def forward(self, x): y = torch.mean(x, (2, 3), keepdim=True) y = self.non_linear1(self.se_reduce(y)) y = self.non_linear2(self.se_expand(y)) y = x * y
return y

class GroupedConv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0): super(GroupedConv2d, self).__init__()
self.num_groups = len(kernel_size) self.split_in_channels = _SplitChannels(in_channels, self.num_groups) self.split_out_channels = _SplitChannels(out_channels, self.num_groups) print(self.split_in_channels) self.grouped_conv = nn.ModuleList() for i in range(self.num_groups): self.grouped_conv.append(nn.Conv2d( self.split_in_channels[i], self.split_out_channels[i], kernel_size[i], stride=stride, padding=padding, bias=False ))
def forward(self, x): if self.num_groups == 1: return self.grouped_conv[0](x)
x_split = torch.split(x, self.split_in_channels, dim=1) x = [conv(t) for conv, t in zip(self.grouped_conv, x_split)] x = torch.cat(x, dim=1)
return x

class MDConv(nn.Module): def __init__(self, channels, kernel_size, stride): super(MDConv, self).__init__()
self.num_groups = len(kernel_size) self.split_channels = _SplitChannels(channels, self.num_groups)
self.mixed_depthwise_conv = nn.ModuleList() for i in range(self.num_groups): self.mixed_depthwise_conv.append(nn.Conv2d( self.split_channels[i], self.split_channels[i], kernel_size[i], stride=stride, padding=kernel_size[i] // 2, groups=self.split_channels[i], bias=False ))
def forward(self, x): if self.num_groups == 1: return self.mixed_depthwise_conv[0](x)
x_split = torch.split(x, self.split_channels, dim=1) x = [conv(t) for conv, t in zip(self.mixed_depthwise_conv, x_split)] x = torch.cat(x, dim=1)
return x

class MixNetBlock(nn.Module): def __init__( self, in_channels, out_channels, kernel_size=[3], expand_ksize=[1], project_ksize=[1], stride=1, expand_ratio=1, non_linear='ReLU', se_ratio=0.0 ):
super(MixNetBlock, self).__init__()
expand = (expand_ratio != 1) expand_channels = in_channels * expand_ratio se = (se_ratio != 0.0) self.residual_connection = (stride == 1 and in_channels == out_channels)
conv = []
if expand: # expansion phase pw_expansion = nn.Sequential( GroupedConv2d(in_channels, expand_channels, expand_ksize), nn.BatchNorm2d(expand_channels), NON_LINEARITY[non_linear] ) conv.append(pw_expansion)
# depthwise convolution phase dw = nn.Sequential( MDConv(expand_channels, kernel_size, stride), nn.BatchNorm2d(expand_channels), NON_LINEARITY[non_linear] ) conv.append(dw)
if se: # squeeze and excite squeeze_excite = SqueezeAndExcite(expand_channels, in_channels, se_ratio) conv.append(squeeze_excite)
# projection phase pw_projection = nn.Sequential( GroupedConv2d(expand_channels, out_channels, project_ksize), nn.BatchNorm2d(out_channels) ) conv.append(pw_projection)
self.conv = nn.Sequential(*conv)
def forward(self, x): if self.residual_connection: return x + self.conv(x) else: return self.conv(x)

class MixNet(nn.Module): # [in_channels, out_channels, kernel_size, expand_ksize, project_ksize, stride, expand_ratio, non_linear, se_ratio] mixnet_s = [(16, 16, [3], [1], [1], 1, 1, 'ReLU', 0.0), (16, 24, [3], [1, 1], [1, 1], 2, 6, 'ReLU', 0.0), (24, 24, [3], [1, 1], [1, 1], 1, 3, 'ReLU', 0.0), (24, 40, [3, 5, 7], [1], [1], 2, 6, 'Swish', 0.5), (40, 40, [3, 5], [1, 1], [1, 1], 1, 6, 'Swish', 0.5), (40, 40, [3, 5], [1, 1], [1, 1], 1, 6, 'Swish', 0.5), (40, 40, [3, 5], [1, 1], [1, 1], 1, 6, 'Swish', 0.5), (40, 80, [3, 5, 7], [1], [1, 1], 2, 6, 'Swish', 0.25), (80, 80, [3, 5], [1], [1, 1], 1, 6, 'Swish', 0.25), (80, 80, [3, 5], [1], [1, 1], 1, 6, 'Swish', 0.25), (80, 120, [3, 5, 7], [1, 1], [1, 1], 1, 6, 'Swish', 0.5), (120, 120, [3, 5, 7, 9], [1, 1], [1, 1], 1, 3, 'Swish', 0.5), (120, 120, [3, 5, 7, 9], [1, 1], [1, 1], 1, 3, 'Swish', 0.5), (120, 200, [3, 5, 7, 9, 11], [1], [1], 2, 6, 'Swish', 0.5), (200, 200, [3, 5, 7, 9], [1], [1, 1], 1, 6, 'Swish', 0.5), (200, 200, [3, 5, 7, 9], [1], [1, 1], 1, 6, 'Swish', 0.5)]
mixnet_m = [(24, 24, [3], [1], [1], 1, 1, 'ReLU', 0.0), (24, 32, [3, 5, 7], [1, 1], [1, 1], 2, 6, 'ReLU', 0.0), (32, 32, [3], [1, 1], [1, 1], 1, 3, 'ReLU', 0.0), (32, 40, [3, 5, 7, 9], [1], [1], 2, 6, 'Swish', 0.5), (40, 40, [3, 5], [1, 1], [1, 1], 1, 6, 'Swish', 0.5), (40, 40, [3, 5], [1, 1], [1, 1], 1, 6, 'Swish', 0.5), (40, 40, [3, 5], [1, 1], [1, 1], 1, 6, 'Swish', 0.5), (40, 80, [3, 5, 7], [1], [1], 2, 6, 'Swish', 0.25), (80, 80, [3, 5, 7, 9], [1, 1], [1, 1], 1, 6, 'Swish', 0.25), (80, 80, [3, 5, 7, 9], [1, 1], [1, 1], 1, 6, 'Swish', 0.25), (80, 80, [3, 5, 7, 9], [1, 1], [1, 1], 1, 6, 'Swish', 0.25), (80, 120, [3], [1], [1], 1, 6, 'Swish', 0.5), (120, 120, [3, 5, 7, 9], [1, 1], [1, 1], 1, 3, 'Swish', 0.5), (120, 120, [3, 5, 7, 9], [1, 1], [1, 1], 1, 3, 'Swish', 0.5), (120, 120, [3, 5, 7, 9], [1, 1], [1, 1], 1, 3, 'Swish', 0.5), (120, 200, [3, 5, 7, 9], [1], [1], 2, 6, 'Swish', 0.5), (200, 200, [3, 5, 7, 9], [1], [1, 1], 1, 6, 'Swish', 0.5), (200, 200, [3, 5, 7, 9], [1], [1, 1], 1, 6, 'Swish', 0.5), (200, 200, [3, 5, 7, 9], [1], [1, 1], 1, 6, 'Swish', 0.5)]
def __init__(self, net_type='mixnet_s', input_size=224, num_classes=1000, stem_channels=16, feature_size=1536, depth_multiplier=1.0): super(MixNet, self).__init__()
if net_type == 'mixnet_s': config = self.mixnet_s stem_channels = 16 dropout_rate = 0.2 elif net_type == 'mixnet_m': config = self.mixnet_m stem_channels = 24 dropout_rate = 0.25 elif net_type == 'mixnet_l': config = self.mixnet_m stem_channels = 24 depth_multiplier *= 1.3 dropout_rate = 0.25 else: raise TypeError('Unsupported MixNet type')
assert input_size % 32 == 0
# depth multiplier if depth_multiplier != 1.0: stem_channels = _RoundChannels(stem_channels * depth_multiplier)
for i, conf in enumerate(config): conf_ls = list(conf) conf_ls[0] = _RoundChannels(conf_ls[0] * depth_multiplier) conf_ls[1] = _RoundChannels(conf_ls[1] * depth_multiplier) config[i] = tuple(conf_ls)
# stem convolution self.stem_conv = Conv3x3Bn(3, stem_channels, 2)
# building MixNet blocks layers = [] for in_channels, out_channels, kernel_size, expand_ksize, project_ksize, stride, expand_ratio, non_linear, se_ratio in config: layers.append(MixNetBlock( in_channels, out_channels, kernel_size=kernel_size, expand_ksize=expand_ksize, project_ksize=project_ksize, stride=stride, expand_ratio=expand_ratio, non_linear=non_linear, se_ratio=se_ratio )) self.layers = nn.Sequential(*layers)
# last several layers self.head_conv = Conv1x1Bn(config[-1][1], feature_size)
self.avgpool = nn.AvgPool2d(input_size // 32, stride=1) self.dropout = nn.Dropout(dropout_rate) self.classifier = nn.Linear(feature_size, num_classes)
self._initialize_weights()
def forward(self, x): x = self.stem_conv(x) x = self.layers(x) x = self.head_conv(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.dropout(x) x = self.classifier(x)
return x
def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2.0 / n)) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): n = m.weight.size(1) m.weight.data.normal_(0, 0.01) m.bias.data.zero_()

if __name__ == '__main__': net = MixNet() x_image = Variable(torch.randn(1, 3, 224, 224)) y = net(x_image)
复制代码


发布于: 刚刚阅读数: 5
用户头像

AI浩

关注

还未添加个人签名 2021.11.08 加入

还未添加个人简介

评论

发布
暂无评论
MixNet解析以及pytorch源码_AI浩_InfoQ写作社区