写点什么

TiFlash 表达式的实现与设计

  • 2022 年 8 月 26 日
    北京
  • 本文字数:8945 字

    阅读完需:约 29 分钟

作者: YY-ha 原文来源:https://tidb.net/blog/2bf57b18

表达式概要

表达式是承载 SQL 大部分逻辑的一个重要部分。SQL 中的表达式和编程语言中的表达式并没有差异。表达式可以大致分为函数、常量、列引用。如 select a + 1 from table 中的 a + 1 是一个表达式,其中 + 是函数,1 是常量,a 是列引用。


在 SQL 中,表达式会归属在不同的算子里执行,以 select a+b from tests.t where c > 0 为例,大家可以从下图看到不同的表达式归属在哪些算子里。



表达式在 SQL 中如何划分出来,并且归属在哪些算子里,是由一套语法规则决定的。下图是 MySQL 8.0 Parser 的语法规则简图,里面大号粗体的是算子标识符,后面跟着的小号字段是归属这个算子的表达式。



在了解了什么是表达式之后,我们来了解一下表达式在 TiFlash 里执行的情况。


在 TiDB HTAP 的体系里,TiFlash 的表达式是由 TiDB 下推给 TiFlash 执行的。首先我们来回顾下 TiDB 计算下推 TiFlash 的流程。



TiDB 接收 MySQL Client 发送的 sql,经由 Parser 和 Optimizer 解析成算子,在之后将算子下推到 TiFlash 里执行。与此同时,算子内部的表达式也会跟随一起下推到 TiFlash 里执行。


如下推所示,如果某个算子带有 TiFlash 不支持的函数,就会导致一连串的算子都无法下推到 TiFlash 里执行。算子内部的表达式都可以下推执行,是算子下推的必要条件。



在算子和表达式下推到 TiFlash 后,TiFlash 会用向量化执行引擎来执行这些算子和表达式。在谈到 TiFlash 的向量化执行引擎之前,我们先来讲一下执行引擎的一个经典模型 Volcano Model。



Volcano Model 源自 1994 年的论文 Volcano-An Extensible and Parallel Query Evaluation System。Volcano Model 将 SQL 分解为若干个独立的 Operator,Operator 串联成一棵 Operator Tree。


如上图所示,从最源头的 Table Scan Operator 开始,一行一行地读取数据,Operator 处理后,传给上游 Operator。最终 Operator Tree 一行一行地输出结果。


下面是对 Operator 接口的一个简单的伪代码描述。


struct Operator{Row next(){    Row row = child.next();    ....    return row;}}
复制代码


Volcano Model 提供了一个非常简洁的执行模型,在工程上也非常容易实现。但是 Volcano Model 在现代编译器和硬件下运行得慢。在后续几年了诞生了对 Volcano Model 的两个改进方案,Codegen 和 Vectorized。TiFlash 就是使用的 Vectorized 即向量化执行。


向量化执行与 Volcano Model 基本一致,区别在于 Block by Block。



Block 是若干 Row 组合在一起的数据块,Block 内部按 Column 保存数据。


这样设计的好处有几个:


  • 虚函数调用的开销会被减小为 1 / (Block Size)。Volcano Model 中的 Operator 和表达式通常都是用多态来实现的,在其中就会引入虚函数调用。每次 Operator Tree 和内部的表达式被调用就是一系列的虚函数调用,在数据量大的情况下,虚函数开销甚至会成为一个不可忽视的点。Block by Block 可以让 Operator Tree 和内部的表达式的一次调用处理多行而不是一行数据,从而均摊了虚函数开销。


  • Cache Friendly。把会被连续处理的数据放在一个数据块里,提高在 Cache 上的空间局部性。

TiFlash 表达式体系 ExpressionActions

除了向量化执行外,TiFlash 在表达式执行上还有一套独立的执行体系 ExpressionActions,不同于 TiDB 源自 Volcano Model 的 ExpressionTree


这两个表达式体系在逻辑语意上是一致的,仅仅在执行过程上有差别。



如上图所示,同样的表达式在 TiDB 和 TiFlash 里会分别在不同的表达式体系里执行。


接下来以 (a + b) * (a + b) 为例子来讲述一下两个表达式体系执行的差异。


首先从 TiDB ExpressionTree 讲起。(a + b) * (a + b) 会被分解成一棵 Expression Tree,每一个 Expression 都是一个节点。从 Column Expression 和 Literal Expression 开始读取数据,遍历整棵 Expression Tree,最终得出表达式结果。


如下图所示,沿着图中的箭头方向,就可以从 Input 计算得出 (a + b) * (a + b) 的结果 Output。



在图中大家可以发现 (a + b) 这个子树出现了两次,也就意味着 (a + b) 本身执行了两次,那么可不可以复用 (a + b) 的计算结果,如下图所示连线? 哪怕这样就不是一棵树了。



事实上是可以的,这也是 TiFlash ExpressionActions 的设计初衷: 中间计算结果复用。



在 TiFlash ExpressionActions 下,中间计算的临时结果会作为 Column 会被写到 Block 里,同时我们会通过 Column Name 获取 Block 中对应的 Column。


如上图所示,沿右图箭头方向遍历 Expression Action,即可得出 (a + b) * (a + b) 的计算结果。可以看到,同样是 (a + b) * (a + b),TiFlash ExpressionActions 里的 (a + b) 只计算了一次。


下面是 ExpressionActions 的执行分解图,从左到右。大家可以对照一下分解图,大概了解一下 ExpressionActions 的执行过程。



接下来我们深入一下代码,从代码层面来了解一下 ExpressionActions 究竟做了些什么。


class ExpressionActions{public:    void execute(Block & block) const    {        for (const auto & action : actions)            action.execute(action);    }
void add(const ExpressionAction & action);
void finalize(const Names & output_columns);
private: std::vector<ExpressionAction> actions;}
复制代码


以上是 ExpressionActions 接口的简化代码。有三个主要方法:


  • execute

  • ExpressionAction::execute 的包装。用于执行表达式。


  • add

  • 用于外部组装出一个 ExpressionActions

  • ExpressionActions 会维护一个 Sample Block,在 Add Action 的过程中 Sample Block 会不断更新,模拟实际 Block 的变化情况。

  • 在 Add 的过程中,重复的 Action 会被跳过。重复 Action 的判断条件是,该 Action 的执行结果是否已经出现在 Sample Block 里了。


  • finalize

  • 分析 Block 内的 Column 引用情况,在合适的位置插入 Remove Action 来移除无用的 Column。

  • 在 Column 引用数归 0 的时候,就会插入对应 Column 的 Remove Action。

  • 下图是 (a + b) * (a + b) 的引用数分析和 Remove Action 插入情况。



ExpressionActionExpressionActions 内部的执行单元。


struct ExpressionAction{    Type type;
void execute(Block & block) const { switch (type) { case: APPLY_FUNCTION: case: REMOVE_COLUMN: case: ADD_COLUMN: } }}
复制代码


ExpressionAction 有不同的 Type 用于对 Block 进行不同的处理


  • REMOVE_COLUMN

  • 即前文所讲的 Remove Action


  • ADD_COLUMN

  • 用于执行 Literal Expression,在 Block 插入一个 Const Column。

  • ADD_COLUMN 会在 Block 中插入一个 Column。对于 Literal,插入的会是 ColumnConst,即常量 Column。

  • block.insert({added_column->cloneResized(block.rows()), result_type, result_name});


  • APPLY_FUNCTION

  • 用于执行 Function Expression,由 ExpressionAction 持有的 IFunction 执行

  • APPLY_FUNCTION 会读取 Block 中的 Argument Columns 传给 IFunction 做计算。计算出结果 Column 后,插入到 Block 中。



Column Expression 没有对应的 Action Type,直接执行 Block::getPositionByName 获取 Column 在 Block 里的下标。但是从 TiDB 获得的 Column Expression 计算得出的并不是 Column 在 Block 中的 Column Name,而是 Column 在 TiDB Schema 中的下标。所以 TiFlash 会维护 TiDB Schema (std::vector<String>) 来桥接 TiDB Column Index 和 TiFlash Column Name,如下图所示。


标量函数在 TiFlash 中的编译与执行

ExpressionAction 的 Type 为 APPLY_FUNCTION 时,ExpressionAction 内部会持有 IFunction。 对 ExpressionAction::execute 的调用都会转发给 IFunction 执行。IFunction 是 TiFlash 向量化标量函数的基类。



首先我们从函数在 TiFlash 中的编译讲起。tipb 是 TiDB 与 TiFlash 之间的序列化协议,下图的 tipb::Expr 等同是 TiDB 里的 Expression。


对于传入的一个 tipb::Expr,首先分门别类,按照 Column,Literal,Function 分别处理。


如果是 Function,首先处理 Function 的所有参数。参数本身也是 tipb::Expr,所以也会按照对应的 tipb::Expr 处理流程处理。在处理完 Function 的所有参数后,就可以去构建 IFunction 本身,然后塞入 ExpressionAction,返回处理结果。



TiDB 对函数的标识是 tipb::ScalarFuncSig,而 TiFlash 使用 Function Name 作为函数的标识。在 TiFlash 里,我们会用映射表的形式将 tipb::ScalarFuncSig 映射成 Function Name。再根据 Function Name 找到对应的 TiFlash Function Builder。



对于窗口函数、聚合函数、distinct 聚合函数、标量函数都有各自的映射表。


const std::unordered_map<tipb::ExprType, String> window_func_map({    {tipb::ExprType::Rank, "rank"},        ...});
const std::unordered_map<tipb::ExprType, String> agg_func_map({ {tipb::ExprType::Count, "count"}, ...});
const std::unordered_map<tipb::ExprType, String> distinct_agg_func_map({ {tipb::ExprType::Count, "countDistinct"}, ...});
const std::unordered_map<tipb::ScalarFuncSig, String> scalar_func_map({ {tipb::ScalarFuncSig::CastIntAsInt, "tidb_cast"}, ...});
复制代码


拿到 Function Name 之后,我们就可以去找到 Function 对应的 Function Builder 去 Build 出 IFunction 实现。TiFlash 有两类 Function Builder: Default Function Builder 和 Special Function Builder。前者是用于处理大多数 Function,后者处理某些特殊情况。



String DAGExpressionAnalyzerHelper::buildFunction(    DAGExpressionAnalyzer * analyzer,    const tipb::Expr & expr,    const ExpressionActionsPtr & actions){    const String & func_name = getFunctionName(expr);    if (function_builder_map.count(func_name) != 0)    {        return function_builder_map[func_name](analyzer, expr, actions);    }    else    {        return buildDefaultFunction(analyzer, expr, actions);    }}
复制代码


Default Function Builder 的处理本身很简单,就是先处理所有的函数入参,然后调用 applyFunction 生成对应的 IFunction 实现。


String DAGExpressionAnalyzerHelper::buildDefaultFunction(    DAGExpressionAnalyzer * analyzer,    const tipb::Expr & expr,    const ExpressionActionsPtr & actions){    const String & func_name = getFunctionName(expr);    Names argument_names;    for (const auto & child : expr.children())    {        String name = analyzer->getActions(child, actions);        argument_names.push_back(name);    }    return analyzer->applyFunction(func_name, argument_names, actions, getCollatorFromExpr(expr));}
复制代码


对某些函数,有些特殊处理,这时就会使用到 Special Function Builder。


特殊处理的 Function Builder 会放在表里,遇到对应的函数,会转发过来。


下面是一些函数的特殊处理映射。


FunctionBuilderMap DAGExpressionAnalyzerHelper::function_builder_map(    {...     {"ifNull", DAGExpressionAnalyzerHelper::buildIfNullFunction},     {"multiIf", DAGExpressionAnalyzerHelper::buildMultiIfFunction},     ...     {"bitAnd", DAGExpressionAnalyzerHelper::buildBitwiseFunction},     {"bitOr", DAGExpressionAnalyzerHelper::buildBitwiseFunction},     {"bitXor", DAGExpressionAnalyzerHelper::buildBitwiseFunction},     {"bitNot", DAGExpressionAnalyzerHelper::buildBitwiseFunction},     {"bitShiftLeft", DAGExpressionAnalyzerHelper::buildBitwiseFunction},     {"bitShiftRight", DAGExpressionAnalyzerHelper::buildBitwiseFunction},     ...});
复制代码


一个特殊的处理的情况是复用函数实现。某些函数可以由另一个函数来代理执行,比如


leftUTF8(str,len) = substrUTF8(str,1,len)。如果让 substrUTF8 来代理执行 leftUTF8,那么就可以省掉 leftUTF8 本身的开发实现工作。下面是 leftUTF8(str,len) = substrUTF8(str,1,len) 的代理实现代码。为 substrUTF8 生成第二个参数 1 后,将 leftUTF8 的两个参数传入 substrUTF8substrUTF8 就可以代理 leftUTF8 执行。


String DAGExpressionAnalyzerHelper::buildLeftUTF8Function(    DAGExpressionAnalyzer * analyzer,    const tipb::Expr & expr,    const ExpressionActionsPtr & actions){    const String & func_name = "substringUTF8";    Names argument_names;
// the first parameter: str String str = analyzer->getActions(expr.children()[0], actions, false); argument_names.push_back(str);
// the second parameter: const(1) auto const_one = constructInt64LiteralTiExpr(1); auto col_const_one = analyzer->getActions(const_one, actions, false); argument_names.push_back(col_const_one);
// the third parameter: len String name = analyzer->getActions(expr.children()[1], actions, false); argument_names.push_back(name);
return analyzer->applyFunction(func_name, argument_names, actions, getCollatorFromExpr(expr));}
复制代码


接下来我们来看一下 IFunction 本身的接口。


class IFunction{public:    virtual String getName() const = 0;
virtual DataTypePtr getReturnTypeImpl(const DataTypes & /*arguments*/) const;
virtual void executeImpl(Block & block, const ColumnNumbers & arguments, size_t result) const;};
复制代码


IFunction 有三个主要方法


  • getName: 返回 Function 的 Name,Name 是作为 TiFlash 向量化函数的唯一标识来使用。


  • getReturnTypeImpl: 负责做向量化函数的类型推导,因为输入参数数据类型的变化可能会导致输出数据类型变化。


  • executeImpl: 负责向量化函数的执行逻辑,这也是一个向量化函数的主体部分。一个 TiFlash 向量化函数够不够 ” 向量化 ”,够不够快也就看这里了。


接下来以 jsonLength(string) 为例子,讲一下向量化函数的执行


  1. 从 Block 中获取 Json Column


  1. 创建同等大小的 Json Length Column


  1. Foreach Json Column,获取每一个行的 Json


  1. 调用 GetJsonLength(Json) 获取 Json Length,将结果插入 Json Length Column 中的对应位置。


  1. 将 Json Length Column 插入到 Block 中,完成单次计算



void executeImpl(Block & block, const ColumnNumbers & arguments, size_t result) const override{    // 1. 获取 json column,json column 本身是 String 类型,所以 json column 用的是 ColumnString 这个 column 实现    const ColumnPtr column = block.getByPosition(arguments[0]).column;    if (const auto * col = checkAndGetColumn<ColumnString>(column.get()))    {        // 2.创建 json len column, json len 本身是 UInt64 类型,用的是 ColumnUInt64 这个 column 实现        auto col_res = ColumnUInt64::create();        typename ColumnUInt64::Container & vec_col_res = col_res->getData();        {            // 3. 遍历 json column,ColumnString 提供了一些裸操作内部 string 的方法,可以提高效率            const auto & data = col->getChars();            const auto & offsets = col->getOffsets();            const size_t size = offsets.size();            vec_col_res.resize(size);
ColumnString::Offset prev_offset = 0; for (size_t i = 0; i < size; ++i) { // 4. 调用 GetJsonLength,计算出 json 的 length,插入到 json len column 中。 std::string_view sv(reinterpret_cast<const char *>(&data[prev_offset]), offsets[i] - prev_offset - 1); vec_col_res[i] = GetJsonLength(sv); prev_offset = offsets[i]; } } // 5. 将 json len column 插入到 Block 中,完成单次计算。 block.getByPosition(result).column = std::move(col_res); } else throw Exception(fmt::format("Illegal column {} of argument of function {}", column->getName(), getName()), ErrorCodes::ILLEGAL_COLUMN);}
复制代码


前段时间 TiFlash 有个社区活动,号召大家来参与 TiFlash 函数下推的工作。


以上关于标量函数的内容在社区活动的两篇文章 TiFlash 函数下推必知必会手把手教你实现 TiFlash 向量化函数 都有包含,大家可以通过这两篇文章了解更多关于 TiFlash 标量函数的内容。也欢迎小伙伴们也参与到 TiFlash 函数下推的工作中来。

聚合函数在 TiFlash 中的编译与执行

聚合函数不同于标量函数的点在于输入 m 行数据输出 n 行数据,且有 m >= n。




所以聚合函数不会使用 ExpressionActionsIFunction,而是有独立的执行体系。


聚合函数本身由 Aggregate 算子来执行,Aggregate 算子负责管理聚合函数的执行步骤,执行并发度等等。


Aggregate 算子的执行有两部分


  • 前者 ExpressionActions 用于执行标量函数的部分。


  • 后者 Aggregator 用于执行聚合函数的部分


如下图所示,对于 select max(a+b)ExpressionActions 执行 a+bAggregator 执行 max



下面详细来说一说 Aggregator 是如何执行聚合函数的。


首先 Aggregator 会多线程从 Input 读取 Block,调用 executeOnBlock 写入 Thread Local AggregatedDataVariantsAggregatedDataVariants 内部会保存当前线程的部分聚合计算结果。


executeOnBlock 阶段完成后,Aggregator 会调用 mergeAndConvertBlocks 将多个 AggregatedDataVariants 合并成一个,输出最终聚合的结果给 Output 。



Aggregator::executeOnBlock 会对每一个 Key 都会创建一个 Aggregate Data。


输入的 Row 会根据 Key 找到对应的 Aggregate Data, 调用 IAggregateFunction::add,更新 Agg Function 保存在 Aggregate Data 里的聚合结果。


如下图所示,Row1 和 Row4 经由 Aggregate Function 计算后,更新 Key1 保存的 Aggregate Data;Row2 经由 Aggregate Function 计算后,更新 Key2 保存的 Aggregate Data;Row3 和 Row5 经由 Aggregate Function 计算后,更新 Key3 保存的 Aggregate Data。



executeOnBlock 完成后,每个线程都会有一个独立的 Aggregate Data。


mergeAndConvertBlocks 阶段会把其他 Aggregate Data 都合并到 Aggregate Data0 上面


IAggregateFunction::merge 用于执行把所有线程计算的部分聚合结果聚合成一个最终聚合结果。


如下图所示,Aggregate Data 在合并的时候,同一个 Key 的数据会合并到一起,与其他 Key 互不干扰。



IAggregateFunction 是聚合函数的实现基类。接下来我们来看一下 IAggregateFunction 本身的接口。


class IAggregateFunction{public:    String getName() const = 0;
DataTypePtr getReturnType() const = 0;
void add(AggregateDataPtr __restrict place, const IColumn ** arg_columns, size_t row_num, Arena * arena) const = 0;
void merge(AggregateDataPtr __restrict place, ConstAggregateDataPtr rhs, Arena * arena) const = 0;
void insertResultInto(ConstAggregateDataPtr __restrict place, IColumn & to, Arena * arena) const = 0;};
复制代码


  • add 用于计算聚合结果并更新到 place


  • merge 用于将 rhs 里的聚合结果合并到 place


  • insertResultInto 用于将 place 里保存的聚合结果输出成 Block


接下来我们以 Sum 这个聚合函数为例子来看一下聚合函数的执行过程。


template <typename T>using AggregateFunctionSumSimple = AggregateFunctionSum<T, typename NearestFieldType<T>::Type, AggregateFunctionSumData<typename NearestFieldType<T>::Type>>;
template <typename T, typename TResult, typename Data>class AggregateFunctionSum final : public IAggregateFunctionDataHelper<Data, AggregateFunctionSum<T, TResult, Data>>{public: void add(AggregateDataPtr __restrict place, const IColumn ** columns, size_t row_num, Arena *) const override { this->data(place).add(column.getData()[row_num]); }
void merge(AggregateDataPtr __restrict place, ConstAggregateDataPtr rhs, Arena *) const override { this->data(place).merge(this->data(rhs)); }};
template <typename T>struct AggregateFunctionSumData{ T sum{};
template <typename U> void add(U value) { AggregateFunctionSumAddImpl<T>::add(sum, value); }
void merge(const AggregateFunctionSumData & rhs) { AggregateFunctionSumAddImpl<T>::add(sum, rhs.sum); }}
template <typename T>struct AggregateFunctionSumAddImpl{ static void NO_SANITIZE_UNDEFINED ALWAYS_INLINE add(T & lhs, const T & rhs) { lhs += rhs; }};
复制代码


  • 实际的 Sum 实现带有很多优化,这里选择最简化的实现


  • 对于 Sum,AggregateData 的实现是 `AggregateFunctionSumData`,内部维护一个 T Sum 保存聚合结果


  • 对于 Sum,addmerge 都是执行 += 操作。


下图是对 Sum 执行过程的一个简化描述图。


add 阶段,Aggregator 会从 Input 读取数据,执行 sum += input,更新 Aggregate Data 里的聚合结果。在 add 完成后,会执行 sum0 += sum1sum0 += sum2,将聚合结果合并成一个。最终输出 sum0 作为最终结果。


总结

本文主要系统性地介绍了 TiFlash 表达式的基本概念,包括表达式体系,标量函数、聚合函数等,以期望读者能够对 TiFlash 的表达式计算有一个初步的了解。


发布于: 刚刚阅读数: 4
用户头像

TiDB 社区官网:https://tidb.net/ 2021.12.15 加入

TiDB 社区干货传送门是由 TiDB 社区中布道师组委会自发组织的 TiDB 社区优质内容对外宣布的栏目,旨在加深 TiDBer 之间的交流和学习。一起构建有爱、互助、共创共建的 TiDB 社区 https://tidb.net/

评论

发布
暂无评论
TiFlash 表达式的实现与设计_TiDB 社区干货传送门_InfoQ写作社区