Introduction to the Keras Tuner
Overview
The Keras Tuner is a library that helps you pick the optimal set of hyperparameters for your TensorFlow program. The process of selecting the right set of hyperparameters for your machine learning (ML) application is called hyperparameter tuning or hypertuning.
Hyperparameters are the variables that govern the training process and the topology of an ML model. These variables remain constant over the training process and directly impact the performance of your ML program. Hyperparameters are of two types:
Model hyperparameters which influence model selection such as the number and width of hidden layers
Algorithm hyperparameters which influence the speed and quality of the learning algorithm such as the learning rate for Stochastic Gradient Descent (SGD) and the number of nearest neighbors for a k Nearest Neighbors (KNN) classifier
In this tutorial, you will use the Keras Tuner to perform hypertuning for an image classification application.
Setup
Download and prepare the dataset
In this tutorial, you will use the Keras Tuner to find the best hyperparameters for a machine learning model that classifies images of clothing from the Fashion MNIST dataset.
Load the data.
Define the model
When you build a model for hypertuning, you also define the hyperparameter search space in addition to the model architecture. The model you set up for hypertuning is called a hypermodel.
You can define a hypermodel through two approaches:
By using a model builder function
By subclassing the
HyperModel
class of the Keras Tuner API
You can also use two pre-defined HyperModel
classes - HyperXception and HyperResNet for computer vision applications.
In this tutorial, you use a model builder function to define the image classification model. The model builder function returns a compiled model and uses hyperparameters you define inline to hypertune the model.
Instantiate the tuner and perform hypertuning
Instantiate the tuner to perform the hypertuning. The Keras Tuner has four tuners available - RandomSearch
, Hyperband
, BayesianOptimization
, and Sklearn
. In this tutorial, you use the Hyperband tuner.
To instantiate the Hyperband tuner, you must specify the hypermodel, the objective
to optimize and the maximum number of epochs to train (max_epochs
).
The Hyperband tuning algorithm uses adaptive resource allocation and early-stopping to quickly converge on a high-performing model. This is done using a sports championship style bracket. The algorithm trains a large number of models for a few epochs and carries forward only the top-performing half of models to the next round. Hyperband determines the number of models to train in a bracket by computing 1 + logfactor
(max_epochs
) and rounding it up to the nearest integer.
Create a callback to stop training early after reaching a certain value for the validation loss.
Run the hyperparameter search. The arguments for the search method are the same as those used for tf.keras.model.fit
in addition to the callback above.
Train the model
Find the optimal number of epochs to train the model with the hyperparameters obtained from the search.
Re-instantiate the hypermodel and train it with the optimal number of epochs from above.
To finish this tutorial, evaluate the hypermodel on the test data.
The my_dir/intro_to_kt
directory contains detailed logs and checkpoints for every trial (model configuration) run during the hyperparameter search. If you re-run the hyperparameter search, the Keras Tuner uses the existing state from these logs to resume the search. To disable this behavior, pass an additional overwrite=True
argument while instantiating the tuner.
评论