超详细 Redis 数据结构底层实现原理介绍
记得点赞+关注呦。
前言
Redis 有五种基本数据类型,可是大家知道这五种数据类型的底层是咋实现吗?接下就带大家了解一下 String、List、Hash、Set、Sorted Set 底层是如何实现的,在这之前,先来看下下面的基本数据结构,分别有简单动态字符串(SDS)、链表、字典、跳跃表、整数集合以及压缩列表,它们是 Redis 数据结构的基本组成部分。
五种数据结构底层实现
<font size=4 color=green>1. String</font>
如果一个字符串对象保存的是整数值, 并且这个整数值可以用 long 类型来表示, 那么字符串对象会将整数值保存在字符串对象结构的 ptr 属性里面(将 void* 转换成 long ), 并将字符串对象的编码设置为 int 。
如果字符串对象保存的是一个字符串值, 并且这个字符串值的长度大于 39 字节, 那么字符串对象将使用一个简单动态字符串(SDS)来保存这个字符串值, 并将对象的编码设置为 raw。
如果字符串对象保存的是一个字符串值, 并且这个字符串值的长度小于等于 39 字节, 那么字符串对象将使用 embstr 编码的方式来保存这个字符串值。
<font size=4 color=green>2. List</font>
列表对象的编码可以是 ziplist 或者 linkedlist 。
列表对象保存的所有字符串元素的长度都小于 64 字节并且保存的元素数量小于 512 个,使用 ziplist 编码;否则使用 linkedlist;
<font size=4 color=green>3. Hash</font>
哈希对象的编码可以是 ziplist 或者 hashtable 。
哈希对象保存的所有键值对的键和值的字符串长度都小于 64 字节并且保存的键值对数量小于 512 个,使用 ziplist 编码;否则使用 hashtable;
<font size=4 color=green>4. Set</font>
集合对象的编码可以是 intset 或者 hashtable 。
集合对象保存的所有元素都是整数值并且保存的元素数量不超过 512 个,使用 intset 编码;否则使用 hashtable;
<font size=4 color=green>5. Sorted Set</font>
有序集合的编码可以是 ziplist 或者 skiplist
有序集合保存的元素数量小于 128 个并且保存的所有元素成员的长度都小于 64 字节。使用 ziplist 编码;否则使用 skiplist;
接下来分别说说这些底层数据结构。
一、简单动态字符串(SDS)
Redis 自己构建了一种名为简单动态字符串(simple dynamic string,SDS)的抽象类型, 并将 SDS 用作 Redis 的默认字符串表示。如:
key 和 value 底层都是用 SDS 来实现的。
SDS 的结构:
free 属性的值为 0 , 表示这个 SDS 没有分配任何未使用空间。
len 属性的值为 5 , 表示这个 SDS 保存了一个五字节长的字符串。
buf 属性是一个 char 类型的数组, 数组的前五个字节分别保存了 'R' 、 'e' 、 'd' 、 'i' 、 's' 五个字符, 而最后一个字节则保存了空字符 '\0' 。SDS 与 C 语言字符串比较相近,但拥有更过的优势:
SDS 获取字符串长度时间复杂度 O(1):因为 SDS 通过 len 字段来存储长度,使用时直接读取就可以;C 语言要想获取字符串长度需要遍历整个字符串,时间复杂度 O(N)。
SDS 能杜绝缓冲区的溢出:因为当 SDS API 要对 SDS 进行修改时,会先检查 SDS 的空间是否足够,如果不够的话 SDS 会自动扩容,So,不会造成缓冲区溢出。而 C 语言则不剧本这个功能。
SDS 能减少修改字符串时带来的内存重分配次数:
空间预分配:当 SDS 扩容时不只是会增加需要的空间大小,还会额外的分配一些未使用的空间。分配的规则是:如果分配后 SDS 的长度小于 1MB,那么会分配等于分配后 SDS 的大小的未使用空间,简单说就是,SDS 动态分配后是 16KB,那么就会多分配 16KB 的未使用空间;如果 小于 1MB,那么久分配 1MB 的未使用空间。
惰性空间释放: 惰性空间释放用于优化 SDS 的字符串缩短操作:当 SDS 的 API 需要缩短 SDS 保存的字符串时,并不会立即内存重分配来回收多出来的字节,而是用 free 来记录未使用空间。
二、链表
链表提供了高效的节点重排能力,以及顺序性的节点访问方式,并且可以通过增删节点来灵活地调整链表的长度。链表在 Redis 中的应用非常广泛,比如 List 的底层实现之一链表,当一个 List 包含了数量比较多的元素,又或者列表中包含的元素都是比较长的字符串时,Redis 就会使用链表作为 List 的底层实现。除了用作 List 的底层实现之外,发布与订阅、慢查询、监视器等动能也用到了链表, Redis 服务器本身还使用链表来保存多个客户端的状态信息,以及使用链表来构建客户端输出缓冲区。
每个链表节点使用一个 adlist.h/listNode 结构来表示:
多个 listNode 可以通过 prev 和 next 指针组成双端链表, 如下图所示。
虽然仅仅使用多个 listNode 结构就可以组成链表, 但使用 adlist.h/list 来持有链表的话, 操作起来会更方便:
list 结构为链表提供了表头指针 head 、表尾指针 tail , 以及链表长度计数器 len , 而 dup 、 free 和 match 成员则是用于实现多态链表所需的类型特定函数:
dup 函数用于复制链表节点所保存的值;
free 函数用于释放链表节点所保存的值;
match 函数则用于对比链表节点所保存的值和另一个输入值是否相等。
下图是由一个 list 结构和三个 listNode 结构组成的链表:
Redis 的链表实现的特性可以总结如下:
双端: 链表节点带有 prev 和 next 指针, 获取某个节点的前置节点和后置节点的复杂度都是 O(1) 。
无环: 表头节点的 prev 指针和表尾节点的 next 指针都指向 NULL , 对链表的访问以 NULL 为终点。
带表头指针和表尾指针: 通过 list 结构的 head 指针和 tail 指针, 程序获取链表的表头节点和表尾节点的复杂度为 O(1) 。
带链表长度计数器: 程序使用 list 结构的 len 属性来对 list 持有的链表节点进行计数, 程序获取链表中节点数量的复杂度为 O(1) 。
多态: 链表节点使用 void* 指针来保存节点值, 并且可以通过 list 结构的 dup 、 free 、 match 三个属性为节点值设置类型特定函数, 所以链表可以用于保存各种不同类型的值。
三、字典
字典, 又称符号表(symbol table)、关联数组(associative array)或者映射(map), 是一种用于保存键值对(key-value pair)的抽象数据结构。其中 Key 是唯一的。类似 Java 的 Map。
字典在 Redis 中主要被应用与:
Redis 数据库底层就是用字典实现的,对数据库的增、删、改、查操作都是构建在对字典的操作之上,比如:
这个就是创建一个 key 为 "msg",value 为 "hello world" 的键值对,保存在代表数据库的字典中。
字典还是哈希键的底层实现之一: 当一个哈希键包含的键值对比较多, 又或者键值对中的元素都是比较长的字符串时, Redis 就会使用字典作为哈希键的底层实现。
Redis 的字典使用哈希表作为底层实现, 一个哈希表里面可以有多个哈希表节点, 而每个哈希表节点就保存了字典中的一个键值对。
接下来的三个小节将分别介绍 Redis 的哈希表、哈希表节点、以及字典的实现。
哈希表
Redis 字典所使用的哈希表由 dict.h/dictht 结构定义:
table 属性是一个数组, 数组中的每个元素都是一个指向 dict.h/dictEntry 结构的指针, 每个 dictEntry 结构保存着一个键值对。
size 属性记录了哈希表的大小, 也即是 table 数组的大小, 而 used 属性则记录了哈希表目前已有节点(键值对)的数量。
sizemask 属性的值总是等于 size - 1 , 这个属性和哈希值一起决定一个键应该被放到 table 数组的哪个索引上面。
下图 展示了一个大小为 4 的空哈希表 (没有包含任何键值对)。
哈希节点
哈希表节点使用 dictEntry 结构表示, 每个 dictEntry 结构都保存着一个键值对:
key 属性保存着键值对中的键, 而 v 属性则保存着键值对中的值, 其中键值对的值可以是一个指针, 或者是一个 uint64_t 整数, 又或者是一个 int64_t 整数。
next 属性是指向另一个哈希表节点的指针, 这个指针可以将多个哈希值相同的键值对连接在一次, 以此来解决键冲突(collision)的问题。
举个例子, 下图就展示了如何通过 next 指针, 将两个索引值相同的键 k1 和 k0 连接在一起。
字典
Redis 中的字典由 dict.h/dict 结构表示:
type 属性和 privdata 属性是针对不同类型的键值对, 为创建多态字典而设置的:
type 属性是一个指向 dictType 结构的指针, 每个 dictType 结构保存了一簇用于操作特定类型键值对的函数, Redis 会为用途不同的字典设置不同的类型特定函数。
而 privdata 属性则保存了需要传给那些类型特定函数的可选参数。
ht 属性是一个包含两个项的数组, 数组中的每个项都是一个 dictht 哈希表, 一般情况下, 字典只使用 ht[0] 哈希表, ht[1] 哈希表只会在对 ht[0] 哈希表进行 rehash 时使用。
除了 ht[1] 之外, 另一个和 rehash 有关的属性就是 rehashidx : 它记录了 rehash 目前的进度, 如果目前没有在进行 rehash , 那么它的值为 -1 。
下图 展示了一个普通状态下(没有进行 rehash)的字典:
哈希算法
当将一个新的键值对插入到字典中,需要计算索引值,Redis 计算索引值的方法是:
类似 Java 的 HashMap,计算 key 的 hash 值,然后 hash & (len - 1), 而 Redis 的 sizemask 就是 size - 1。
哈希冲突怎么办
当出现 Hash 冲突时,Redis 使用的是 链地址法 来解决冲突,链地址法就是将冲突的节点构成一个链表放在该索引位置上,Redis 采用的是头插法。解决 hash 冲突的还有三种方法,分别是:开放定址法(线性探测再散列,二次探测再散列,伪随机探测再散列)、再哈希法以及建立一个公共溢出区,以后会单独介绍一些解决 hash 冲突的四种方法。
rehash
随着不断的操作,hash 表中的键值对可能会增多或减少,为了让哈希表的负载因子保持在一个范围内,需要对 hash 表进行扩容或收缩,收缩和扩容的过程就叫 rehash。rehash 过程如下:
为字典的 ht[1] 哈希表分配空间, 这个哈希表的空间大小取决于要执行的操作, 以及 ht[0] 当前包含的键值对数量 (也即是 ht[0].used 属性的值)(ht 是字典中的 hash 表,上文有介绍):
如果执行的是扩展操作, 那么 ht[1] 的大小为第一个大于等于 ht[0].used * 2 的 2^n (2 的 n 次方幂);
如果执行的是收缩操作, 那么 ht[1] 的大小为第一个大于等于 ht[0].used 的 2^n 。
将保存在 ht[0] 中的所有键值对 rehash 到 ht[1] 上面: rehash 指的是重新计算键的哈希值和索引值, 然后将键值对放置到 ht[1] 哈希表的指定位置上。
当 ht[0] 包含的所有键值对都迁移到了 ht[1] 之后 (ht[0] 变为空表), 释放 ht[0] , 将 ht[1] 设置为 ht[0] , 并在 ht[1] 新创建一个空白哈希表, 为下一次 rehash 做准备
当以下条件中的任意一个被满足时, 程序会自动开始对哈希表执行扩展操作:
服务器目前没有在执行 BGSAVE 命令或者 BGREWRITEAOF 命令, 并且哈希表的负载因子大于等于 1 ;服务器目前正在执行 BGSAVE 命令或者 BGREWRITEAOF 命令, 并且哈希表的负载因子大于等于 5 ;其中哈希表的负载因子可以通过公式:
计算得出。
比如说, 对于一个大小为 4 , 包含 4 个键值对的哈希表来说, 这个哈希表的负载因子为:
load_factor = 4 / 4 = 1
又比如说, 对于一个大小为 512 , 包含 256 个键值对的哈希表来说, 这个哈希表的负载因子为:
load_factor = 256 / 512 = 0.5
根据 BGSAVE 命令或 BGREWRITEAOF 命令是否正在执行, 服务器执行扩展操作所需的负载因子并不相同, 这是因为在执行 BGSAVE 命令或 BGREWRITEAOF 命令的过程中, Redis 需要创建当前服务器进程的子进程, 而大多数操作系统都采用写时复制(copy-on-write)技术来优化子进程的使用效率, 所以在子进程存在期间, 服务器会提高执行扩展操作所需的负载因子, 从而尽可能地避免在子进程存在期间进行哈希表扩展操作, 这可以避免不必要的内存写入操作, 最大限度地节约内存。
另一方面, 当哈希表的负载因子小于 0.1 时, 程序自动开始对哈希表执行收缩操作。
渐进式 rehash
rehash 时会将 ht[0] 所有的键值对迁移到 ht[1] 中,但这个动作不是一次性的,而是分多次、渐进式地完成。这样的所得原因时:当数据量大的时候一次性迁移会造成服务器在一段时间内定制服务。为了避免发生这样的事就出现了 渐进式 rehash。
以下是哈希表渐进式 rehash 的详细步骤:
为 ht[1] 分配空间, 让字典同时持有 ht[0] 和 ht[1] 两个哈希表。
在字典中维持一个索引计数器变量 rehashidx , 并将它的值设置为 0 , 表示 rehash 工作正式开始。
在 rehash 进行期间, 每次对字典执行添加、删除、查找或者更新操作时, 程序除了执行指定的操作以外, 还会顺带将 ht[0] 哈希表在 rehashidx 索引上的所有键值对 rehash 到 ht[1] , 当 rehash 工作完成之后, 程序将 rehashidx 属性的值增一。
随着字典操作的不断执行, 最终在某个时间点上, ht[0] 的所有键值对都会被 rehash 至 ht[1] , 这时程序将 rehashidx 属性的值设为 -1 , 表示 rehash 操作已完成。
渐进式 rehash 的好处在于它采取分而治之的方式, 将 rehash 键值对所需的计算工作均滩到对字典的每个添加、删除、查找和更新操作上, 从而避免了集中式 rehash 而带来的庞大计算量。在 rehash 期间,字典的删改查操作都是同时作用在 ht[0] 以及 ht[1] 上的。如查找一个键,会现在 ht[0] 查找,找不到就去 ht[1] 查找,注意的是增加操作,新增的键值对只会保存到 ht[1]上,不会保存到 ht[0] 上,这一措施保证了 ht[0] 的键值只减不增,随着 rehash 操作 ht[0] 最终会变成空表。
Redis 的字典实现的特性可以总结如下:
字典被广泛用于实现 Redis 的各种功能, 其中包括数据库和哈希键。
Redis 中的字典使用哈希表作为底层实现, 每个字典带有两个哈希表, 一个用于平时使用, 另一个仅在进行 rehash 时使用。
当字典被用作数据库的底层实现, 或者哈希键的底层实现时, Redis 使用 MurmurHash2 算法来计算键的哈希值。
哈希表使用链地址法来解决键冲突, 被分配到同一个索引上的多个键值对会连接成一个单向链表。
在对哈希表进行扩展或者收缩操作时, 程序需要将现有哈希表包含的所有键值对 rehash 到新哈希表里面, 并且这个 rehash 过程并不是一次性地完成的, 而是渐进式地完成的。
四、跳跃表
跳跃表(skiplist)是一种有序数据结构, 它通过在每个节点中维持多个指向其他节点的指针, 从而达到快速访问节点的目的。
跳跃表支持平均 O(\log N) 最坏 O(N) 复杂度的节点查找, 还可以通过顺序性操作来批量处理节点。
在大部分情况下, 跳跃表的效率可以和平衡树相媲美, 并且因为跳跃表的实现比平衡树要来得更为简单, 所以有不少程序都使用跳跃表来代替平衡树。
Redis 使用跳跃表作为有序集合键的底层实现之一: 如果一个有序集合包含的元素数量比较多,又或者有序集合中元素的成员(member)是比较长的字符串时,Redis 就会使用跳跃表来作为有序集合键的底层实现。
Redis 只在两个地方用到了跳跃表, 一个是实现有序集合键, 另一个是在集群节点中用作内部数据结构, 除此之外, 跳跃表在 Redis 里面没有其他用途。
Redis 的跳跃表由 redis.h/zskiplistNode 和 redis.h/zskiplist 两个结构定义, 其中 zskiplistNode 结构用于表示跳跃表节点, 而 zskiplist 结构则用于保存跳跃表节点的相关信息, 比如节点的数量, 以及指向表头节点和表尾节点的指针, 等等。
上图展示了一个跳跃表示例, 位于图片最左边的是 zskiplist 结构, 该结构包含以下属性:
header :指向跳跃表的表头节点。
tail :指向跳跃表的表尾节点。
level :记录目前跳跃表内,层数最大的那个节点的层数(表头节点的层数不计算在内)。
length :记录跳跃表的长度,也即是,跳跃表目前包含节点的数量(表头节点不计算在内)。
位于 zskiplist 结构右方的是四个 zskiplistNode 结构, 该结构包含以下属性:
层(level):节点中用 L1 、 L2 、 L3 等字样标记节点的各个层, L1 代表第一层, L2 代表第二层,以此类推。每个层都带有两个属性:前进指针和跨度。前进指针用于访问位于表尾方向的其他节点,而跨度则记录了前进指针所指向节点和当前节点的距离。在上面的图片中,连线上带有数字的箭头就代表前进指针,而那个数字就是跨度。当程序从表头向表尾进行遍历时,访问会沿着层的前进指针进行。
后退(backward)指针:节点中用 BW 字样标记节点的后退指针,它指向位于当前节点的前一个节点。后退指针在程序从表尾向表头遍历时使用。
分值(score):各个节点中的 1.0 、 2.0 和 3.0 是节点所保存的分值。在跳跃表中,节点按各自所保存的分值从小到大排列。
成员对象(obj):各个节点中的 o1 、 o2 和 o3 是节点所保存的成员对象。
注意表头节点和其他节点的构造是一样的: 表头节点也有后退指针、分值和成员对象, 不过表头节点的这些属性都不会被用到, 所以图中省略了这些部分, 只显示了表头节点的各个层。
本节接下来的内容将对 zskiplistNode 和 zskiplist 两个结构进行更详细的介绍。
跳跃表节点
跳跃表节点的实现由 redis.h/zskiplistNode 结构定义:
<font size=5 color=green>层</font>
跳跃表节点的 level 数组可以包含多个元素, 每个元素都包含一个指向其他节点的指针, 程序可以通过这些层来加快访问其他节点的速度, 一般来说, 层的数量越多, 访问其他节点的速度就越快。
每次创建一个新跳跃表节点的时候, 程序都根据幂次定律 (power law,越大的数出现的概率越小) 随机生成一个介于 1 和 32 之间的值作为 level 数组的大小, 这个大小就是层的“高度”。
下图分别展示了三个高度为 1 层、 3 层和 5 层的节点, 因为 C 语言的数组索引总是从 0 开始的, 所以节点的第一层是 level[0] , 而第二层是 level[1] ,以此类推。
<font size=5 color=green>跨度</font>
层的跨度(level[i].span 属性)用于记录两个节点之间的距离:
两个节点之间的跨度越大, 它们相距得就越远。指向 NULL 的所有前进指针的跨度都为 0 , 因为它们没有连向任何节点。初看上去, 很容易以为跨度和遍历操作有关, 但实际上并不是这样 —— 遍历操作只使用前进指针就可以完成了, 跨度实际上是用来计算排位(rank)的: 在查找某个节点的过程中, 将沿途访问过的所有层的跨度累计起来, 得到的结果就是目标节点在跳跃表中的排位。
举个例子, 下图用虚线标记了在跳跃表中查找分值为 3.0 、 成员对象为 o3 的节点时, 沿途经历的层: 查找的过程只经过了一个层, 并且层的跨度为 3 , 所以目标节点在跳跃表中的排位为 3 。
<font size=5 color=green>后退指针</font>
节点的后退指针(backward 属性)用于从表尾向表头方向访问节点: 跟可以一次跳过多个节点的前进指针不同, 因为每个节点只有一个后退指针, 所以每次只能后退至前一个节点。
下图用虚线展示了如果从表尾向表头遍历跳跃表中的所有节点: 程序首先通过跳跃表的 tail 指针访问表尾节点, 然后通过后退指针访问倒数第二个节点, 之后再沿着后退指针访问倒数第三个节点, 再之后遇到指向 NULL 的后退指针, 于是访问结束。
<font size=5 color=green>分值和成员</font>
节点的分值(score 属性)是一个 double 类型的浮点数, 跳跃表中的所有节点都按分值从小到大来排序。
节点的成员对象(obj 属性)是一个指针, 它指向一个字符串对象, 而字符串对象则保存着一个 SDS 值。
在同一个跳跃表中, 各个节点保存的成员对象必须是唯一的, 但是多个节点保存的分值却可以是相同的: 分值相同的节点将按照成员对象在字典序中的大小来进行排序, 成员对象较小的节点会排在前面(靠近表头的方向), 而成员对象较大的节点则会排在后面(靠近表尾的方向)。
举个例子, 在下图所示的跳跃表中, 三个跳跃表节点都保存了相同的分值 10086.0 , 但保存成员对象 o1 的节点却排在保存成员对象 o2 和 o3 的节点之前, 而保存成员对象 o2 的节点又排在保存成员对象 o3 的节点之前, 由此可见, o1 、 o2 、 o3 三个成员对象在字典中的排序为 o1 <= o2 <= o3 。
跳跃表
虽然仅靠多个跳跃表节点就可以组成一个跳跃表, 如下图所示。
但通过使用一个 zskiplist 结构来持有这些节点, 程序可以更方便地对整个跳跃表进行处理, 比如快速访问跳跃表的表头节点和表尾节点, 又或者快速地获取跳跃表节点的数量(也即是跳跃表的长度)等信息, 如下图所示。
zskiplist 结构的定义如下:
header 和 tail 指针分别指向跳跃表的表头和表尾节点, 通过这两个指针, 程序定位表头节点和表尾节点的复杂度为 O(1) 。
通过使用 length 属性来记录节点的数量, 程序可以在 O(1) 复杂度内返回跳跃表的长度。
level 属性则用于在 O(1) 复杂度内获取跳跃表中层高最大的那个节点的层数量, 注意表头节点的层高并不计算在内。
关于跳跃表的总结:
跳跃表是有序集合的底层实现之一, 除此之外它在 Redis 中没有其他应用。
Redis 的跳跃表实现由 zskiplist 和 zskiplistNode 两个结构组成, 其中 zskiplist 用于保存跳跃表信息(比如表头节点、表尾节点、长度), 而 zskiplistNode 则用于表示跳跃表节点。
每个跳跃表节点的层高都是 1 至 32 之间的随机数。
在同一个跳跃表中, 多个节点可以包含相同的分值, 但每个节点的成员对象必须是唯一的。
跳跃表中的节点按照分值大小进行排序, 当分值相同时, 节点按照成员对象的大小进行排序。
五、整数集合
整数集合(intset)是集合键的底层实现之一: 当一个集合只包含整数值元素, 并且这个集合的元素数量不多时, Redis 就会使用整数集合作为集合键的底层实现。
举个例子, 如果我们创建一个只包含五个元素的集合键, 并且集合中的所有元素都是整数值, 那么这个集合键的底层实现就会是整数集合:
整数集合(intset)是 Redis 用于保存整数值的集合抽象数据结构, 它可以保存类型为 int16_t 、 int32_t 或者 int64_t 的整数值, 并且保证集合中不会出现重复元素。
每个 intset.h/intset 结构表示一个整数集合:
contents 数组是整数集合的底层实现: 整数集合的每个元素都是 contents 数组的一个数组项(item), 各个项在数组中按值的大小从小到大有序地排列, 并且数组中不包含任何重复项。
length 属性记录了整数集合包含的元素数量, 也即是 contents 数组的长度。
虽然 intset 结构将 contents 属性声明为 int8_t 类型的数组, 但实际上 contents 数组并不保存任何 int8_t 类型的值 —— contents 数组的真正类型取决于 encoding 属性的值:如果 encoding 属性的值为 INTSET_ENC_INT16 , 那么 contents 就是一个 int16_t 类型的数组, 数组里的每个项都是一个 int16_t 类型的整数值 (最小值为 -32,768 ,最大值为 32,767 )。下图是一个包含五个 int16_t 类型整数值的整数集合。
每当我们要将一个新元素添加到整数集合里面, 并且新元素的类型比整数集合现有所有元素的类型都要长时, 整数集合需要先进行升级(upgrade), 然后才能将新元素添加到整数集合里面。
升级整数集合并添加新元素共分为三步进行:
根据新元素的类型, 扩展整数集合底层数组的空间大小, 并为新元素分配空间。
将底层数组现有的所有元素都转换成与新元素相同的类型, 并将类型转换后的元素放置到正确的位上, 而且在放置元素的过程中, 需要继续维持底层数组的有序性质不变。
将新元素添加到底层数组里面。
整数集合不支持降级操作, 一旦对数组进行了升级, 编码就会一直保持升级后的状态。
关于整数集合的总结:
整数集合是集合键的底层实现之一。
整数集合的底层实现为数组, 这个数组以有序、无重复的方式保存集合元素, 在有需要时, 程序会根据新添加元素的类型, 改变这个数组的类型。
升级操作为整数集合带来了操作上的灵活性, 并且尽可能地节约了内存。
整数集合只支持升级操作, 不支持降级操作。
六、压缩列表
压缩列表(ziplist)是列表键和哈希键的底层实现之一。
当一个列表键只包含少量列表项, 并且每个列表项要么就是小整数值, 要么就是长度比较短的字符串, 那么 Redis 就会使用压缩列表来做列表键的底层实现。
比如说, 执行以下命令将创建一个压缩列表实现的列表键:
因为列表键里面包含的都是 1 、 3 、 5 、 10086 这样的小整数值, 以及 "hello" 、 "world" 这样的短字符串。
另外, 当一个哈希键只包含少量键值对, 并且每个键值对的键和值要么就是小整数值, 要么就是长度比较短的字符串, 那么 Redis 就会使用压缩列表来做哈希键的底层实现。
举个例子, 执行以下命令将创建一个压缩列表实现的哈希键:
因为哈希键里面包含的所有键和值都是小整数值或者短字符串。
<font size=3 color=green>压缩列表的构成:</font>压缩列表是 Redis 为了节约内存而开发的, 由一系列特殊编码的连续内存块组成的顺序型(sequential)数据结构。
一个压缩列表可以包含任意多个节点(entry), 每个节点可以保存一个字节数组或者一个整数值。
下图展示了压缩列表的各个组成部分。
下表则记录了各个组成部分的类型、长度、以及用途。表 7-1 则记录了各个组成部分的类型、长度、以及用途。
<font size=3 color=green>压缩列表节点的构成:</font>每个压缩列表节点都由 previous_entry_length 、 encoding 、 content 三个部分组成, 如下图所示。
节点的 previous_entry_length 属性以字节为单位, 记录了压缩列表中前一个节点的长度。
节点的 encoding 属性记录了节点的 content 属性所保存数据的类型以及长度:
节点的 content 属性负责保存节点的值, 节点值可以是一个字节数组或者整数, 值的类型和长度由节点的 encoding 属性决定。关于压缩列表的总结:
压缩列表是一种为节约内存而开发的顺序型数据结构。
压缩列表被用作列表键和哈希键的底层实现之一。
压缩列表可以包含多个节点,每个节点可以保存一个字节数组或者整数值。
添加新节点到压缩列表, 或者从压缩列表中删除节点, 可能会引发连锁更新操作, 但这种操作出现的几率并不高。
最后
如果觉得还不错请点赞关注转发,不胜感激。
版权声明: 本文为 InfoQ 作者【善良的布隆】的原创文章。
原文链接:【http://xie.infoq.cn/article/78215ce2bb651e7079ea3c80b】。文章转载请联系作者。
评论