druid 源码学习二 - 对锁的理解
- 2022 年 5 月 12 日
本文字数:3851 字
阅读完需:约 13 分钟
Druid 初始化的时候有段加锁代码,接下来我们通过代码来分析对锁的理解。
public void init() throws SQLException {
if (inited) {
return;
}
// bug fixed for dead lock, for issue #2980
DruidDriver.getInstance();
final ReentrantLock lock = this.lock;
try {
lock.lockInterruptibly();
} catch (InterruptedException e) {
throw new SQLException("interrupt", e);
}
当多个线程同时对共享资源进行操作时,会因为线程不安全,造成数据错误。在 java 中有不同的锁机制来避免这一问题。其中 ReentrantLock 是锁的一个实现类, 它可以保证线程安全。那么它是如何保证线程安全的呢?
首先,我们来了解下 ReentrantLock 原理。
ReentrantLock 原理分析
ReentrantLock 内部实现有两种方式,公平锁和非公平锁。默认是非公平锁
public ReentrantLock() {
sync = new NonfairSync();
}
也可以在构造方法中指定公平锁
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}
需要特别注意的是,它们都是直接 new 的锁对象,这两个锁对象都是继承于 Sync 这个内部类的。查看非公平锁源码如下:
/**
* Sync object for non-fair locks
*/
static final class NonfairSync extends Sync {
private static final long serialVersionUID = 7316153563782823691L;
/**
* Performs lock. Try immediate barge, backing up to normal
* acquire on failure.
*/
final void lock() {
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1);
}
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
}
而 Sync 又是继承于 AQS 同步器的
/**
* Base of synchronization control for this lock. Subclassed
* into fair and nonfair versions below. Uses AQS state to
* represent the number of holds on the lock.
*/
abstract static class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = -5179523762034025860L;
/**
* Performs {@link Lock#lock}. The main reason for subclassing
* is to allow fast path for nonfair version.
*/
abstract void lock();
/**
* Performs non-fair tryLock. tryAcquire is implemented in
* subclasses, but both need nonfair try for trylock method.
*/
//尝试获取锁
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
// 尝试释放锁
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
if (c == 0) {
free = true;
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}
因此,归根结底还是通过 AQS 的思想来实现可重入锁的。接下来分析最核心的 lock 和 unlock
public void lock() {
sync.lock();
}
可见,ReentrantLock 的 lock 方法就是调用 sync 变量的 lock()。所以说实现锁,其实就是调用 NonfairSync 的 lock()方法:
/**
* Sync object for non-fair locks
*/
static final class NonfairSync extends Sync {
private static final long serialVersionUID = 7316153563782823691L;
/**
* Performs lock. Try immediate barge, backing up to normal
* acquire on failure.
*/
final void lock() {
if (compareAndSetState(0, 1))//CAS自旋
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1);
}
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
}
若自旋成功则设置当前拥有独占权的线程为当前线程
protected final void setExclusiveOwnerThread(Thread thread) {
exclusiveOwnerThread = thread;
}
否则的话,执行 acquire()
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
tryAcquire:会尝试再次通过 CAS 获取一次锁。addWaiter:将当前线程加入上面锁的双向链表(等待队列)中
private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
enq(node);
return node;
}
acquireQueued:通过自旋,判断当前队列节点是否可以获取锁。
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
再看看 unlock(),释放锁的方法
public void unlock() {
sync.release(1);
}
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
可见,释放锁就是对 AQS 中的状态值 State 进行修改,并唤醒下一个节点。
private void unparkSuccessor(Node node) {
/*
* If status is negative (i.e., possibly needing signal) try
* to clear in anticipation of signalling. It is OK if this
* fails or if status is changed by waiting thread.
*/
int ws = node.waitStatus;
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0);
/*
* Thread to unpark is held in successor, which is normally
* just the next node. But if cancelled or apparently null,
* traverse backwards from tail to find the actual
* non-cancelled successor.
*/
Node s = node.next;
if (s == null || s.waitStatus > 0) {
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
if (s != null)
LockSupport.unpark(s.thread);
}
总结:
保证线程安全的一个有效方法就是互斥同步,互斥是实现同步的一种方法,当达到了同步,也就解决了线程安全的问题。
Doug Lea《Java 并发编程:设计原则与模式》一书中, 推荐的三个用锁的最佳实践,它们分别是:
1. 永远只在更新对象的成员变量时加锁
2. 永远只在访问可变的成员变量时加锁
3. 永远不在调用其他对象的方法时加锁
版权声明: 本文为 InfoQ 作者【Nick】的原创文章。
原文链接:【http://xie.infoq.cn/article/777a5d90d480f4ad8954001ce】。文章转载请联系作者。
Nick
终身学习,向死而生 2020.03.18 加入
得到、极客时间重度学习者,来infoQ 是为了输出倒逼输入
评论