Fluid 给数据弹性一双隐形的翅膀 -- 自定义弹性伸缩,多线程面试题 2021
192.168.1.204 93m 2% 1455Mi 10%
192.168.1.205 125m 3% 1925Mi 13%
192.168.1.206 96m 2% 1689Mi 11%
否则手动执行以下命令:
kubectl create -f integration/metrics-server
[](
)6. 部署 custom-metrics-api 组件。
为了基于自定义指标进行扩展,你需要拥有两个组件:
第一个组件是从应用程序收集指标并将其存储到 Prometheus 时间序列数据库。
第二个组件使用收集的度量指标来扩展 Kubernetes 自定义 metrics API,即 k8s-prometheus-adapter。
第一个组件在第三步部署完成,下面部署第二个组件。
如果已经配置了 custom-metrics-api,在 adapter 的 configmap 配置中增加与 dataset 相关的配置:
apiVersion: v1
kind: ConfigMap
metadata:
name: adapter-config
namespace: monitoring
data:
config.yaml: |
rules:
seriesQuery: '{name=~"Cluster_(CapacityTotal|CapacityUsed)",fluid_runtime!="",instance!="",job="alluxio runtime",namespace!="",pod!=""}'
seriesFilters:
is: ^Cluster_(CapacityTotal|CapacityUsed)$
resources:
overrides:
namespace:
resource: namespace
pod:
resource: pods
fluid_runtime:
resource: datasets
name:
matches: "^(.*)"
as: "capacity_used_rate"
metricsQuery: ceil(Cluster_CapacityUsed{<<.LabelMatchers>>}*100/(Cluster_CapacityTotal{<<.LabelMatchers>>}))
否则手动执行以下命令:
kubectl create -f integration/custom-metrics-api/namespace.yaml
kubectl create -f integration/custom-metrics-api
注意:因为 custom-metrics-api 对接集群中的 Prometheous 的访问地址,请替换 prometheous url 为你真正使用的 Prometheous 地址。
检查自定义指标:
$ kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1" | jq
{
"kind": "APIResourceList",
"apiVersion": "v1",
"groupVersion": "custom.metrics.k8s.io/v1beta1",
"resources": [
{
"name": "pods/capacity_used_rate",
"singularName": "",
"namespaced": true,
"kind": "MetricValueList",
"verbs": [
"get"
]
},
{
"name": "datasets.data.fluid.io/capacity_used_rate",
"singularName": "",
"namespaced": true,
"kind": "MetricValueList",
"verbs": [
"get"
]
},
{
"name": "namespaces/capacity_used_rate",
"singularName": "",
"namespaced": false,
"kind": "MetricValueList",
"verbs": [
"get"
]
}
]
}
[](
)7. 提交测试使用的 Dataset。
$ cat<<EOF >dataset.yaml
apiVersion: data.fluid.io/v1alpha1
kind: Dataset
metadata:
name: spark
spec:
mounts:
mountPoint: https://mirrors.bit.edu.cn/apache/spark/
name: spark
apiVersion: data.fluid.io/v1alpha1
kind: AlluxioRuntime
metadata:
name: spark
spec:
replicas: 1
tieredstore:
levels:
mediumtype: MEM
path: /dev/shm
quota: 1Gi
high: "0.99"
low: "0.7"
properties:
alluxio.user.streaming.data.timeout: 300sec
EOF
$ kubectl create -f dataset.yaml
dataset.data.fluid.io/spark created
alluxioruntime.data.fluid.io/spark created
[](
)8. 查看这个 Dataset 是否处于可用状态。
[](
)可以看到该数据集的数据总量为 2.71GiB, 目前 Fluid 提供的缓存节点数为 1,可以提供的最大缓存能力为 1GiB。此时数据量是无法满足全量数据缓存的需求。
$ kubectl get dataset
NAME UFS TOTAL SIZE CACHED CACHE CAPACITY CACHED PERCENTAGE PHASE AGE
spark 2.71GiB 0.00B 1.00GiB 0.0% Bound 7m38s
[](
)9. 当该 Dataset 处于可用状态后,查看是否已经可以从 custom-metrics-api 获得监控指标。
kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1/namespaces/default/datasets.data.fluid.io/*/capacity_used_rate" | jq
{
"kind": "MetricValueList",
"apiVersion": "custom.metrics.k8s.io/v1beta1",
"metadata": {
"selfLink": "/apis/custom.metrics.k8s.io/v1beta1/namespaces/default/datasets.data.fluid.io/%2A/capacity_used_rate"
},
"items": [
{
"describedObject": {
"kind": "Dataset",
"namespace": "default",
"name": "spark",
"apiVersion": "data.fluid.io/v1alpha1"
},
"metricName": "capacity_used_rate",
"timestamp": "2021-04-04T07:24:52Z",
"value": "0"
}
]
}
[](
)10. 创建 HPA 任务。
$ cat<<EOF > hpa.yaml
apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
name: spark
spec:
scaleTargetRef:
apiVersion: data.fluid.io/v1alpha1
kind: AlluxioRuntime
name: spark
minReplicas: 1
maxReplicas: 4
metrics:
type: Object
object:
metric:
name: capacity_used_rate
describedObject:
apiVersion: data.fluid.io/v1alpha1
kind: Dataset
name: spark
target:
type: Value
value: "90"
behavior:
scaleUp:
policies:
type: Pods
value: 2
periodSeconds: 600
scaleDown:
selectPolicy: Disabled
EOF
首先,我们解读一下从样例配置,这里主要有两部分一个是扩缩容的规则,另一个是扩缩容的灵敏度:
规则:触发扩容行为的条件为 Dataset 对象的缓存数据量占总缓存能力的 90%;扩容对象为 AlluxioRun
time,最小副本数为 1,最大副本数为 4;而 Dataset 和 AlluxioRuntime 的对象需要在同一个 namespace。
策略:可以 K8s 1.18 以上的版本,可以分别针对扩容和缩容场景设置稳定时间和一次扩缩容步长比例。比如在本例子, 一次扩容周期为 10 分钟(periodSeconds),扩容时新增 2 个副本数,当然这也不可以超过 maxReplicas 的限制;而完成一次扩容后,冷却时间(stabilizationWindowSeconds)为 20 分钟;而缩容策略可以选择直接关闭。
[](
)11. 查看 HPA 配置, 当前缓存空间的数据占比为 0。远远低于触发扩容的条件。
$ kubectl get hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
spark AlluxioRuntime/spark 0/90 1 4 1 33s
$ kubectl describe hpa
Name: spark
Namespace: default
Labels: <none>
Annotations: <none>
CreationTimestamp: Wed, 07 Apr 2021 17:36:39 +0800
Reference: AlluxioRuntime/spark
Metrics: ( current / target )
"capacity_used_rate" on Dataset/spark (target value): 0 / 90
Min replicas: 1
Max replicas: 4
Behavior:
Scale Up:
Stabilization Window: 0 seconds
Select Policy: Max
Policies:
Type: Pods Value: 2 Period: 600 seconds
Scale Down:
Select Policy: Disabled
Policies:
Type: Percent Value: 100 Period: 15 seconds
AlluxioRuntime pods: 1 current / 1 desired
Conditions:
Type Status Reason Message
AbleToScale True ScaleDownStabilized recent recommendations were higher than current one, applying the highest recent recommendation
ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica count from Dataset metric capacity_used_rate
ScalingLimited False DesiredWithinRange the desired count is within the acceptable range
Events: <none>
[](
)12. 创建数据预热任务。
$ cat<<EOF > dataload.yaml
apiVersion: data.fluid.io/v1alpha1
kind: DataLoad
metadata:
name: spark
spec:
dataset:
name: spark
namespace: default
EOF
$ kubectl create -f dataload.yaml
$ kubectl get dataload
NAME DATASET PHASE AGE DURATION
spark spark Executing 15s Unfinished
[](
)13. 此时可以发现缓存的数据量接近了 Fluid 可以提供的缓存能力(1GiB)同时触发了弹性伸缩的条件。
$ kubectl get dataset
NAME UFS TOTAL SIZE CACHED CACHE CAPACITY CACHED PERCENTAGE PHASE AGE
spark 2.71GiB 1020.92MiB 1.00GiB 36.8% Bound 5m15s
从 HPA 的监控,可以看到 Alluxio Runtime 的扩容已经开始, 可以发现扩容的步长为 2。
$ kubectl get hpa
评论