一文搞懂一致性 hash 的原理和实现
在 go-zero 的分布式缓存系统分享里,Kevin 重点讲到过一致性 hash 的原理和分布式缓存中的实践。本文来详细讲讲一致性 hash 的原理和在 go-zero 中的实现。
以存储为例,在整个微服务系统中,我们的存储不可能说只是一个单节点。
一是为了提高稳定,单节点宕机情况下,整个存储就面临服务不可用;
二是数据容错,同样单节点数据物理损毁,而多节点情况下,节点有备份,除非互为备份的节点同时损毁。
那么问题来了,多节点情况下,数据应该写入哪个节点呢?
hash
所以本质来讲:我们需要一个可以将输入值“压缩”并转成更小的值,这个值通常状况下是唯一、格式极其紧凑的,比如 uint64:
幂等:每次用同一个值去计算 hash 必须保证都能得到同一个值
这个就是 hash
算法完成的。
但是采取普通的 hash
算法进行路由,如:key % N
。有一个节点由于异常退出了集群或者是心跳异常,这时再进行 hash route
,会造成大量的数据重新 分发
到不同的节点 。节点在接受新的请求时候,需要重新处理获取数据的逻辑:如果是在缓存中,容易引起 缓存雪崩。
此时就需要引入 consistent hash
算法了。
consistent hash
我们来看看 consistent hash
是怎么解决这些问题的:
rehash
先解决大量 rehash
的问题:
如上图,当加入一个新的节点时,影响的 key 只有 key31
,新加入(剔除)节点后,只会影响该节点附近的数据。其他节点的数据不会收到影响,从而解决了节点变化的问题。
这个正是:单调性。这也是 normal hash
算法无法满足分布式场景的原因。
数据倾斜
其实上图可以看出:目前多数的 key 都集中在 node 1
上。如果当 node 数量比较少的情况下,可以回引发多数 key 集中在某个 node
上,监控时发现的问题就是:节点之间负载不均。
为了解决这个问题,consistent hash
引入了 virtual node
的概念。
既然是负载不均,我们就人为地构造一个均衡的场景出来,但是实际 node 只有这么多。所以就使用 virtual node
划分区域,而实际服务的节点依然是之前的 node。
具体实现
先来看看 Get()
:
Get
先说说实现的原理:
计算
key
的 hash找到第一个匹配的
virtual node
的 index,并取到对应的h.keys[index]
:virtual node hash 值对应到这个
ring
中去寻找一个与之匹配的actual node
其实我们可以看到 ring
中获取到的是一个 []node
。这是因为在计算 virtual node hash
,可能会发生 hash 冲突,不同的 virtual node hash
对应到一个实际 node。
这也说明:node
与 virtual node
是一对多的关系。而里面的 ring
就是下面这个设计:
这个其实也就表明了一致性 hash 的分配策略:
virtual node
作为值域划分。key
去获取node
,从划分依据上是以virtual node
作为边界virtual node
通过hash
,在对应关系上保证了不同的 node 分配的 key 是大致均匀的。也就是 打散绑定加入一个新的 node,会对应分配多个
virtual node
。新节点可以负载多个原有节点的压力,从全局看,较容易实现扩容时的负载均衡。
Add Node
看完 Get
其实大致就知道整个一致性 hash 的设计:
好了这样,基本的一个一致性 hash 就实现完备了。
具体代码:https://github.com/tal-tech/go-zero/blob/master/core/hash/consistenthash.go
使用场景
开头其实就说了,一致性 hash 可以广泛使用在分布式系统中:
分布式缓存。可以在
redis cluster
这种存储系统上构建一个cache proxy
,自由控制路由。而这个路由规则就可以使用一致性 hash 算法服务发现
分布式调度任务
以上这些分布式系统中,都可以在负载均衡模块中使用。
项目地址
https://github.com/tal-tech/go-zero
欢迎使用 go-zero 并 star 支持我们!
版权声明: 本文为 InfoQ 作者【万俊峰Kevin】的原创文章。
原文链接:【http://xie.infoq.cn/article/66e41fe9315b47e9c911414d2】。
本文遵守【CC-BY 4.0】协议,转载请保留原文出处及本版权声明。
评论