Python 中的函数式编程三大法宝:map、filter、reduce
众所周知,Python 支持多种编程范式:过程式(使用基础的语句)、面向对象编程和函数式编程。
Python 也提供了其他函数式编程语言的工具:
利用 map 在一个可迭代对象的各项上调用函数的工具
利用 filter 来过滤项
利用 reduce 把函数作用在成对的项上来运行结果的工具
在没有循环的情况下处理可迭代对象:map
有时我们需要对列表、集合、字典等可迭代序列做的一个操作就是:对其中每一个元素值进行某种操作,把其结果收集起来。
比如选出数据库中的某一列进行加减操作,或者针对某些特殊的值做平方的处理。我们先来看一个例子:
此时就可以利用 Python 的 map,允许您在不使用循环的显式中处理和转换所有项目,该技术通常称为映射。当您需要将转换函数应用于可迭代并将其转换为新的迭代时,map 就能够有其用武之地。
如上,我们会传入一个自定义的函数 square()
来更加一般化地使用它,也就是对列表中的每一个元素都应用这个函数。
map 对列表中的每一个元素都调用了 square 函数,并将返回值收集到一个新的列表中。
正因为我们需要自定义一个 square 函数,结合上一篇文章 lambda 函数的简单介绍中。我们可以利用 lambda 直接生成这个匿名函数,也就是可以写出这样的代码实现相同的功能:
map 传入内置 Python 函数
除了自定义函数,还可以 map 中传入内置的 Python 函数。例如,如果您有一个字符串列表,您可以轻松地创建一个计算该字符串列表长度的新列表:
map 高级用法
map 不单能实现 for 循环能实现的同样的方式,还有性能优势。map 的高级用法比如:在一个可序列类型中,map 会按照顺序,并行地从各个序列中逐项取出一组又一组参数,然后传入函数中:
能看到上述代码的结果,map 对传入的每个序列并行各自取一个值。
map 与列表推导式
map 调用其实与列表推导式相似。
但是 map 在一般情况下会比列表推导式运行更快,而且编写的代码也会更少。而且有一点很重要:通过使用圆括号而不是方括号来包围一个推导,能创建一个按需产生值的对象,减少了内存又减少了程序的响应时间。
选择可迭代对象中的元素:filter
map 函数是将 Python 函数式编程工具集中一个主要也相对明确的代表。而 filter 和 reduce 分别实现了基于一个测试函数选择可迭代对象的元素,以及向”元素对“ 应用函数的功能。
下面来看一个调用 filter 挑出一个序列中大于零的元素:
filter 对于序列或可迭代对象中的元素,如果函数对该元素返回了 True 值,这个元素就会被加入到结果列表中。
与 map 一样,filter 也能用一个 for 循环来等效,但是 filter 是内置的、简明的,通常也运行得更快:
同样的功能,我们也能用列表推导式来实现:
合并可迭代对象中的元素: reduce
Python 的 reduce()是一种函数,它在 Python 标准库中居住在一个名为 functools
的模块中:
通过 reduce 来计算一个列表中所有元素加起来的和:
reduce 会将当前的和列表中的下一个元素传入列出的 lambda 函数,在默认条件下,序列中的第一个元素初始化了起始值。
使用 reduce 的这种用法也与如下使用 for 循环实现了同样的功能:
总结
map 包括将转换函数应用于可迭代对象以生成新的可迭代对象。新迭代中的项是通过对原始迭代中的每个项调用转换函数来生成的。
filter 包括将谓词或布尔值函数应用于迭代以生成新的可迭代。通过筛选原始可迭代中的任何项目,以使谓词函数返回 false 的任何项目生成的项目。
reduce 包括将 reduce 函数应用于迭代以产生单个累积值。
参考文章:
Python 学习手册(原书第 5 版):P570-P575
版权声明: 本文为 InfoQ 作者【踏雪痕】的原创文章。
原文链接:【http://xie.infoq.cn/article/5667a068ec075cde43a57f9b0】。文章转载请联系作者。
评论