写点什么

头脑风暴:最长递增子序列

  • 2022 年 8 月 17 日
    江苏
  • 本文字数:739 字

    阅读完需:约 2 分钟

头脑风暴:最长递增子序列

题目

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。


子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。


示例 1:输入:nums = [10,9,2,5,3,7,101,18] 输出:4 解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。


示例 2:输入:nums = [0,1,0,3,2,3] 输出:4


示例 3:输入:nums = [7,7,7,7,7,7,7] 输出:1


提示:


  • 1 <= nums.length <= 2500

  • -10^4 <= nums[i] <= 104

解题思路

根据题意,此题可以用动态规划的方式来求解。


第一步,确定 dp 数组以及下标的含义:dp[i] 表示 i 之前包括 i 的以 nums[i] 结尾最长上升子序列的长度。


第二步,确定递推公式:位置 i 的最长升序子序列等于 j 从 0 到 i-1 各个位置的最长升序子序列 + 1 的最大值。递推公式为:if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);


第三步,初始化:dp[i] 的起始大小是 1。


第四步,确定遍历顺序:dp[i] 是有 0 到 i-1 各个位置的最长升序子序列推导而来,那么遍历 i 一定是从前向后遍历。j 其实就是 0 到 i-1,遍历 i 的循环在外层,遍历 j 则在内层。

代码实现

class Solution {    public int lengthOfLIS(int[] nums) {        if(nums.length == 0){            return 0;        }        int[] dp = new int[nums.length];        int res = 0;        Arrays.fill(dp, 1);        for (int i = 0; i < nums.length; i++) {            for (int j = 0; j < i; j++) {                if (nums[j] < nums[i]) dp[i] = Math.max(dp[i], dp[j] + 1);            }            res = Math.max(res, dp[i]);        }        return res;    }}
复制代码

最后

  • 时间复杂度:O(n^2),其中 n 为数组 nums 的长度.

  • 空间复杂度:O(n).

发布于: 刚刚阅读数: 3
用户头像

佛系编码 2019.05.13 加入

红鲤鱼与绿鲤鱼与驴。

评论

发布
暂无评论
头脑风暴:最长递增子序列_算法_HelloWorld杰少_InfoQ写作社区