摘要:ES 集群是进行大数据存储和分析,快速检索的利器,本文简述了 ES 的集群架构,并提供了在 Kubernetes 中快速部署 ES 集群的样例;对 ES 集群的监控运维工具进行了介绍,并提供了部分问题定位经验,最后总结了常用 ES 集群的 API 调用方法。
本文分享自华为云社区《Kubernetes中部署ES集群及运维》,原文作者:minucas。
ES 集群架构:
ES 集群分为单点模式和集群模式,其中单点模式一般在生产环境不推荐使用,推荐使用集群模式部署。其中集群模式又分为 Master 节点与 Data 节点由同一个节点承担,以及 Master 节点与 Data 节点由不同节点承担的部署模式。Master 节点与 Data 节点分开的部署方式可靠性更强。下图为 ES 集群的部署架构图:
采用 K8s 进行 ES 集群部署:
1、采用 k8s statefulset 部署,可快速的进行扩缩容 es 节点,本例子采用 3 Master Node + 12 Data Node 方式部署
2、通过 k8s service 配置了对应的域名和服务发现,确保集群能自动联通和监控
kubectl -s http://ip:port create -f es-master.yaml
kubectl -s http://ip:port create -f es-data.yaml
kubectl -s http://ip:port create -f es-service.yaml
复制代码
es-master.yaml:
apiVersion: apps/v1
kind: StatefulSet
metadata:
labels:
addonmanager.kubernetes.io/mode: Reconcile
k8s-app: es
kubernetes.io/cluster-service: "true"
version: v6.2.5
name: es-master
namespace: default
spec:
podManagementPolicy: OrderedReady
replicas: 3
revisionHistoryLimit: 10
selector:
matchLabels:
k8s-app: es
version: v6.2.5
serviceName: es
template:
metadata:
labels:
k8s-app: camp-es
kubernetes.io/cluster-service: "true"
version: v6.2.5
spec:
containers:
- env:
- name: NAMESPACE
valueFrom:
fieldRef:
apiVersion: v1
fieldPath: metadata.namespace
- name: ELASTICSEARCH_SERVICE_NAME
value: es
- name: NODE_MASTER
value: "true"
- name: NODE_DATA
value: "false"
- name: ES_HEAP_SIZE
value: 4g
- name: ES_JAVA_OPTS
value: -Xmx4g -Xms4g
- name: cluster.name
value: es
image: elasticsearch:v6.2.5
imagePullPolicy: Always
name: es
ports:
- containerPort: 9200
hostPort: 9200
name: db
protocol: TCP
- containerPort: 9300
hostPort: 9300
name: transport
protocol: TCP
resources:
limits:
cpu: "6"
memory: 12Gi
requests:
cpu: "4"
memory: 8Gi
securityContext:
capabilities:
add:
- IPC_LOCK
- SYS_RESOURCE
volumeMounts:
- mountPath: /data
name: es
- command:
- /bin/elasticsearch_exporter
- -es.uri=http://localhost:9200
- -es.all=true
image: elasticsearch_exporter:1.0.2
imagePullPolicy: IfNotPresent
livenessProbe:
failureThreshold: 3
httpGet:
path: /health
port: 9108
scheme: HTTP
initialDelaySeconds: 30
periodSeconds: 10
successThreshold: 1
timeoutSeconds: 10
name: es-exporter
ports:
- containerPort: 9108
hostPort: 9108
protocol: TCP
readinessProbe:
failureThreshold: 3
httpGet:
path: /health
port: 9108
scheme: HTTP
initialDelaySeconds: 10
periodSeconds: 10
successThreshold: 1
timeoutSeconds: 10
resources:
limits:
cpu: 100m
memory: 128Mi
requests:
cpu: 25m
memory: 64Mi
securityContext:
capabilities:
drop:
- SETPCAP
- MKNOD
- AUDIT_WRITE
- CHOWN
- NET_RAW
- DAC_OVERRIDE
- FOWNER
- FSETID
- KILL
- SETGID
- SETUID
- NET_BIND_SERVICE
- SYS_CHROOT
- SETFCAP
readOnlyRootFilesystem: true
dnsPolicy: ClusterFirst
initContainers:
- command:
- /sbin/sysctl
- -w
- vm.max_map_count=262144
image: alpine:3.6
imagePullPolicy: IfNotPresent
name: elasticsearch-logging-init
resources: {}
securityContext:
privileged: true
restartPolicy: Always
schedulerName: default-scheduler
securityContext: {}
volumes:
- hostPath:
path: /Data/es
type: DirectoryOrCreate
name: es
复制代码
es-data.yaml
apiVersion: apps/v1
kind: StatefulSet
metadata:
labels:
addonmanager.kubernetes.io/mode: Reconcile
k8s-app: es
kubernetes.io/cluster-service: "true"
version: v6.2.5
name: es-data
namespace: default
spec:
podManagementPolicy: OrderedReady
replicas: 12
revisionHistoryLimit: 10
selector:
matchLabels:
k8s-app: es
version: v6.2.5
serviceName: es
template:
metadata:
labels:
k8s-app: es
kubernetes.io/cluster-service: "true"
version: v6.2.5
spec:
containers:
- env:
- name: NAMESPACE
valueFrom:
fieldRef:
apiVersion: v1
fieldPath: metadata.namespace
- name: ELASTICSEARCH_SERVICE_NAME
value: es
- name: NODE_MASTER
value: "false"
- name: NODE_DATA
value: "true"
- name: ES_HEAP_SIZE
value: 16g
- name: ES_JAVA_OPTS
value: -Xmx16g -Xms16g
- name: cluster.name
value: es
image: elasticsearch:v6.2.5
imagePullPolicy: Always
name: es
ports:
- containerPort: 9200
hostPort: 9200
name: db
protocol: TCP
- containerPort: 9300
hostPort: 9300
name: transport
protocol: TCP
resources:
limits:
cpu: "8"
memory: 32Gi
requests:
cpu: "7"
memory: 30Gi
securityContext:
capabilities:
add:
- IPC_LOCK
- SYS_RESOURCE
volumeMounts:
- mountPath: /data
name: es
- command:
- /bin/elasticsearch_exporter
- -es.uri=http://localhost:9200
- -es.all=true
image: elasticsearch_exporter:1.0.2
imagePullPolicy: IfNotPresent
livenessProbe:
failureThreshold: 3
httpGet:
path: /health
port: 9108
scheme: HTTP
initialDelaySeconds: 30
periodSeconds: 10
successThreshold: 1
timeoutSeconds: 10
name: es-exporter
ports:
- containerPort: 9108
hostPort: 9108
protocol: TCP
readinessProbe:
failureThreshold: 3
httpGet:
path: /health
port: 9108
scheme: HTTP
initialDelaySeconds: 10
periodSeconds: 10
successThreshold: 1
timeoutSeconds: 10
resources:
limits:
cpu: 100m
memory: 128Mi
requests:
cpu: 25m
memory: 64Mi
securityContext:
capabilities:
drop:
- SETPCAP
- MKNOD
- AUDIT_WRITE
- CHOWN
- NET_RAW
- DAC_OVERRIDE
- FOWNER
- FSETID
- KILL
- SETGID
- SETUID
- NET_BIND_SERVICE
- SYS_CHROOT
- SETFCAP
readOnlyRootFilesystem: true
dnsPolicy: ClusterFirst
initContainers:
- command:
- /sbin/sysctl
- -w
- vm.max_map_count=262144
image: alpine:3.6
imagePullPolicy: IfNotPresent
name: elasticsearch-logging-init
resources: {}
securityContext:
privileged: true
restartPolicy: Always
schedulerName: default-scheduler
securityContext: {}
volumes:
- hostPath:
path: /Data/es
type: DirectoryOrCreate
name: es
复制代码
es-service.yaml
apiVersion: v1
kind: Service
metadata:
labels:
addonmanager.kubernetes.io/mode: Reconcile
k8s-app: es
kubernetes.io/cluster-service: "true"
kubernetes.io/name: Elasticsearch
name: es
namespace: default
spec:
clusterIP: None
ports:
- name: es
port: 9200
protocol: TCP
targetPort: 9200
- name: exporter
port: 9108
protocol: TCP
targetPort: 9108
selector:
k8s-app: es
sessionAffinity: None
type: ClusterIP
复制代码
ES 集群监控
工欲善其事必先利其器,中间件的运维首先要有充分的监控手段,ES 集群的监控常用的三种监控手段:exporter、eshead、kopf,由于 ES 集群是采用 k8s 架构部署,很多特性都会结合 k8s 来开展
Grafana 监控
通过 k8s 部署 es-exporter 将监控 metrics 导出,prometheus 采集监控数据,grafana 定制 dashboard 展示
ES-head 组件
github 地址:https://github.com/mobz/elasticsearch-head
ES-head 组件可通过谷歌浏览器应用商店搜索安装,使用 Chrome 插件可查看 ES 集群的情况
Cerebro(kopf)组件
github 地址:https://github.com/lmenezes/cerebro
ES 集群问题处理
ES 配置
资源配置:关注 ES 的 CPU、Memory 以及 Heap Size,Xms Xmx 的配置,建议如机器是 8u32g 内存的情况下,堆内存和 Xms Xmx 配置为 50%,官网建议单个 node 的内存不要超过 64G
索引配置:由于 ES 检索通过索引来定位,检索的时候 ES 会将相关的索引数据装载到内存中加快检索速度,因此合理的对索引进行设置对 ES 的性能影响很大,当前我们通过按日期创建索引的方法(个别数据量小的可不分割索引)
ES 负载
CPU 和 Load 比较高的节点重点关注,可能的原因是 shard 分配不均匀,此时可手动讲不均衡的 shard relocate 一下
shard 配置
shard 配置最好是 data node 数量的整数倍,shard 数量不是越多越好,应该按照索引的数据量合理进行分片,确保每个 shard 不要超过单个 data node 分配的堆内存大小,比如数据量最大的 index 单日 150G 左右,分为 24 个 shard,计算下来单个 shard 大小大概 6-7G 左右
副本数建议为 1,副本数过大,容易导致数据的频繁 relocate,加大集群负载
删除异常 index
curl -X DELETE "10.64.xxx.xx:9200/szv-prod-ingress-nginx-2021.05.01"
复制代码
索引名可使用进行正则匹配进行批量删除,如:-2021.05.*
节点负载高的另一个原因
在定位问题的时候发现节点数据 shard 已经移走但是节点负载一直下不去,登入节点使用 top 命令发现节点 kubelet 的 cpu 占用非常高,重启 kubelet 也无效,重启节点后负载才得到缓解
ES 集群常规运维经验总结(参考官网)
查看集群健康状态
ES 集群的健康状态分为三种:Green、Yellow、Red。
Green(绿色):集群健康;
Yellow(黄色):集群非健康,但在负载允许范围内可自动 rebalance 恢复;
Red(红色):集群存在问题,有部分数据未就绪,至少有一个主分片未分配成功。
可通过 API 查询集群的健康状态及未分配的分片:
GET _cluster/health
{
"cluster_name": "camp-es",
"status": "green",
"timed_out": false,
"number_of_nodes": 15,
"number_of_data_nodes": 12,
"active_primary_shards": 2176,
"active_shards": 4347,
"relocating_shards": 0,
"initializing_shards": 0,
"unassigned_shards": 0,
"delayed_unassigned_shards": 0,
"number_of_pending_tasks": 0,
"number_of_in_flight_fetch": 0,
"task_max_waiting_in_queue_millis": 0,
"active_shards_percent_as_number": 100
}
复制代码
查看 pending tasks:
其中 priority 字段则表示该 task 的优先级
查看分片未分配原因
GET _cluster/allocation/explain
复制代码
其中 reason 字段表示哪种原因导致的分片未分配,detail 表示详细未分配的原因
查看所有未分配的索引和主分片:
GET /_cat/indices?v&health=red
复制代码
查看哪些分片出现异常
curl -s http://ip:port/_cat/shards | grep UNASSIGNED
复制代码
重新分配一个主分片:
POST _cluster/reroute?pretty" -d '{
"commands" : [
{
"allocate_stale_primary" : {
"index" : "xxx",
"shard" : 1,
"node" : "12345...",
"accept_data_loss": true
}
}
]
}
复制代码
其中 node 为 es 集群节点的 id,可以通过 curl ‘ip:port/_node/process?pretty’ 进行查询
降低索引的副本的数量
PUT /szv_ingress_*/settings
{
"index": {
"number_of_replicas": 1
}
}
复制代码
点击关注,第一时间了解华为云新鲜技术~
评论