写点什么

【算法社区】训练准备和复杂度分析

  • 2022 年 7 月 04 日
  • 本文字数:2217 字

    阅读完需:约 7 分钟

​​前言:📫 作者简介:小明java问道之路,专注于研究计算机底层的博主,就职于金融公司后端高级工程师,擅长交易领域的高安全/可用/并发/性能的设计和架构📫 🏆 Java 领域新星创作者、阿里云专家博主、华为云享专家🏆🔥 如果此文还不错的话,还请👍关注点赞收藏三连支持👍一下博主哦


本文导读:本文介绍了学习算法和数据结构的方法和准备工作,介绍了学习算法的一些必要的专业名词,时间复杂度、空间复杂度的代码案例


一、训练准备-怎么学?学到什么程度?

1、怎么学?第一遍:读题和思考 5-15 分钟,如果有思路的话自己开始做和写代码(思考所有的可能解法);如果没思路看题解,前提是读题思考 15 分钟(理解题目的意思),看题解默写背诵(思考所有的可能解法)、熟练(分析每种解法的思路),然后开始自己写(闭卷)第二遍:默写程序、调试(先在头脑里面调试,实在不行再在编译器里调试),这一遍一定要弄会,会写,哪怕时间长(刻意练习、分解—构建知识树、知识模型)第三遍:隔一天再写一遍程序,思考那里写错了,为了记忆第四遍:一周后再写一遍,思考和其他的知识模型的关联,建立知识模型!第五遍:面试前写一遍,复习


2、学到什么程度?

可以构件知识树(知识模型、思维导图),做过的题有多种解法,讲出来举一反三


二、复杂度原理衡量代码的好坏,包括两个非常重要的指标:

1.运行时间;2.占用空间。衡量标准有个度就是时间复杂度和空间复杂度


时间复杂度:算法的时间复杂度表示为,若存在函数 f(n),使得当 n 趋近于无穷大时,T(n)/ f(n)的极限值为不等于零的常数,则称 f(n)是 T(n)的同数量级函数。记作 T(n)= O(f(n)),称 O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。


空间复杂度:算法的空间复杂度通过计算算法所需的存储空间实现,算法空间复杂度的计算公式记作:S(n)=O(f(n)),其中,n 为问题的规模,f(n)为语句关于 n 所占存储空间的函数。


如何推导出时间复杂度呢,有如下几个原则:1、如果运行时间是常数量级,用常数 1 表示;2、只保留时间函数中的最高阶项;3、如果最高阶项存在,则省去最高阶项前面的系数。


如何影响空间复杂度的三个方面:一个算法在计算机存储器上所占用的存储空间,包括 1、存储算法本身所占用的存储空间 2、算法的输入输出数据所占用的存储空间 3、算法在运行过程中临时占用的存储空间


三、复杂度算法分析

(一)几种时间复杂度的代码示例

O(1) 算法

一种算法的运算次数与数据规模无关,那么它的时间复杂度是常数级别的,写成 O(1),哈希算法就是典型的 O(1)时间复杂度,无论数据规模多大,都可以在一次计算后找到目标。

int fun(int key) {    return -key;}
复制代码


O(logn) 算法

时间复杂度 O(logn)对数阶,当数据增大 n 倍时,耗时增大 logn 倍,二分查找就是 O(logn)的算法,每次排除一半的可能

int fun(int a[], int key) {    int low = 0;    int high = a.length - 1;    while (low <= high) {        int mid = low + (high - low) / 2;        if (a[mid] > key) high = mid - 1;        else if (a[mid] < key) low = mid + 1;        else return mid;    }    return -1;}
复制代码


O(n) 算法

线性阶,就代表数据量增大几倍,耗时也增大几倍,比如常见的遍历算法

void fun(int i) {    for (int a = 0; a < i; a++)}
复制代码


O(nlogn)算法

线性对数,就是 n 乘以 logn(遍历的同时内部可以排除一半数据),当数据增大 256,耗时增大 256*8=2048 倍。这个复杂度高于线性低于平方。归并排序就是 O(nlogn)的时间复杂度。


public void mergeSort(int[] arr, int p, int q) {    if (p >= q) return;    int mid = (p + q) / 2;    mergeSort(arr, p, mid);    mergeSort(arr, mid + 1, q);    merge(arr, p, mid, q);}
private void merge(int[] arr, int p, int mid, int q) { int[] temp = new int[arr.length]; int i = p, j = mid + 1, iter = p; while (i <= mid && j <= q) { if (arr[i] <= arr[j]) temp[iter++] = arr[i++]; else temp[iter++] = arr[j++]; } while (i <= mid) { temp[iter++] = arr[i++]; } while (j <= q) { temp[iter++] = arr[j++]; } for (int t = p; t <= q; t++) arr[t] = temp[t];}
复制代码


O(n²)算法

void fun(int i) {    for (int a = 0; a < i; a++)        for (int b = a; a < i; a++)}
复制代码

对比 O(n³) 算法、 O(n²)算法、O(nlogn) 算法、O(n) 算法、O(logn) 算法


​编辑​


(二)几种空间复杂度的代码示例

常量空间

类似于时间复杂度 O(1),当算法的存储空间大小固定,和输入规模没有直接的关系时,空间复杂度记作 O(1)

int a = 0;
复制代码


线性空间

当算法分配的空间是一个线性的集合(如数组),并且集合大小和输入规模 n 成正比时,空间复杂度记作 O(n)

int[] a = new int[n];
复制代码


二维空间

当算法分配的空间是一个二维数组集合,并且集合的长度和宽度都与输入规模 n 成正比时,空间复杂度记作 O(n^2)

int[][] arr = new int[i][j];
复制代码


递归空间

在操作系统执行程序时,会专门分配一块内存,用来存储“方法调用栈”。此时栈空间复杂度就是 O(n)。方法调用栈包括入栈和出栈两个操作:当进入一个新方法时,执行入栈操作,把调用的方法和参数信息压入栈中。当方法返回时,执行出栈操作,把调用的方法和参数信息从栈中弹出

void fun(int i) {    fun(i);}
复制代码


小结:本文介绍了学习算法和数据结构的方法和准备工作,介绍了学习算法的一些必要的专业名词等等

发布于: 刚刚阅读数: 3
用户头像

还未添加个人签名 2020.03.20 加入

🏆阿里云专家博主、华为云享专家、Java领域新星创作者 📫就职某大型金融互联网公司高级研发工程师 👍注于研究计算机底层、算法和数据结构

评论

发布
暂无评论
【算法社区】训练准备和复杂度分析_数据结构_小明Java问道之路_InfoQ写作社区