写点什么

比物理线程都好用的 C++20 的协程,你会用吗?

发布于: 2021 年 05 月 17 日

​​​​​​​​​​​​摘要:事件驱动(event driven)是一种常见的代码模型,其通常会有一个主循环(mainloop)不断的从队列中接收事件,然后分发给相应的函数/模块处理。常见使用事件驱动模型的软件包括图形用户界面(GUI),嵌入式设备软件,网络服务端等。


本文分享自华为云社区《C++20的协程在事件驱动代码中的应用》,原文作者:飞得乐 。

嵌入式事件驱动代码的难题


事件驱动event driven)是一种常见的代码模型,其通常会有一个主循环mainloop)不断的从队列中接收事件,然后分发给相应的函数/模块处理。常见使用事件驱动模型的软件包括图形用户界面(GUI),嵌入式设备软件,网络服务端等。


本文以一个高度简化的嵌入式处理模块做为事件驱动代码的例子:假设该模块需要处理用户命令、外部消息、告警等各种事件,并在主循环中进行分发,那么示例代码如下:


#include <iostream>#include <vector>
enum class EventType { COMMAND, MESSAGE, ALARM};
// 仅用于模拟接收的事件序列std::vector<EventType> g_events{EventType::MESSAGE, EventType::COMMAND, EventType::MESSAGE};
void ProcessCmd(){ std::cout << "Processing Command" << std::endl;}
void ProcessMsg(){ std::cout << "Processing Message" << std::endl;}
void ProcessAlm(){ std::cout << "Processing Alarm" << std::endl;}
int main() { for (auto event : g_events) { switch (event) { case EventType::COMMAND: ProcessCmd(); break; case EventType::MESSAGE: ProcessMsg(); break; case EventType::ALARM: ProcessAlm(); break; } } return 0;}
复制代码


这只是一个极简的模型示例,真实的代码要远比它复杂得多,可能还会包含:从特定接口获取事件,解析不同的事件类型,使用表驱动方法进行分发……不过这些和本文关系不大,可暂时先忽略。


用顺序图表示这个模型,大体上是这样:



​在实际项目中,常常碰到的一个问题是:有些事件的处理时间很长,比如某个命令可能需要批量的进行上千次硬件操作:


void ProcessCmd(){    for (int i{0}; i < 1000; ++i) {        // 操作硬件接口……    }}
复制代码


这种事件处理函数会长时间的阻塞主循环,导致其他事件一直排队等待。如果所有事件对响应速度都没有要求,那也不会造成问题。但是实际场景中经常会有些事件是需要及时响应的,比如某些告警事件出现后,需要很快的执行业务倒换,否则就会给用户造成损失。这个时候,处理时间很长的事件就会产生问题。



​有人会想到额外增加一个线程专用于处理高优先级事件,实践中这确实是个常用方法。然而在嵌入式系统中,事件处理函数会读写很多公共数据结构,还会操作硬件接口,如果并发调用,极容易导致各类数据竞争和硬件操作冲突,而且这些问题常常很难定位和解决。那在多线程的基础上加锁呢?——设计哪些锁,加在哪些地方,也是非常烧脑而且容易出错的工作,如果互斥等待过多,还会影响性能,甚至出现死锁等麻烦的问题。


另一种解决方案是:把处理时间很长的任务切割成很多个小任务,并重新加入到事件队列中。这样就不会长时间的阻塞主循环。这个方案避免了并发编程产生的各种头疼问题,但是却带来另一个难题:如何把一个大流程切割成很多独立小流程?在编码时,这需要程序员解析函数流程的所有上下文信息,设计数据结构单独存储,并建立关联这些数据结构的特殊事件。这往往会带来几倍的额外代码量和工作量。


这个问题几乎在所有事件驱动型软件中都会存在,但在嵌入式软件中尤为突出。这是因为嵌入式环境下的 CPU、线程等资源受限,而实时性要求高,并发编程受限。


C++20 语言给这个问题提供了一种新的解决方案:协程。

C++20 的协程简介


关于协程coroutine)是什么,在 wikipedia[1]等资料中有很好的介绍,本文就不赘述了。在 C++20 中,协程的关键字只是语法糖:编译器会将函数执行的上下文(包括局部变量等)打包成一个对象,并让未执行完的函数先返回给调用者。之后,调用者使用这个对象,可以让函数从原来的“断点”处继续往下执行。


使用协程,编码时就不再需要费心费力的去把函数“切割”成多个小任务,只用按照习惯的流程写函数内部代码,并在允许暂时中断执行的地方加上 co_yield 语句,编译器就可以将该函数处理为可“分段执行”。


协程用起来的感觉有点像线程切换,因为函数的栈帧stack frame)被编译器保存成了对象,可以随时恢复出来接着往下运行。但是实际执行时,协程其实还是单线程顺序运行的,并没有物理线程切换,一切都只是编译器的“魔法”。所以用协程可以完全避免多线程切换的性能开销以及资源占用,也不用担心数据竞争等问题。


可惜的是,C++20 标准只提供了协程基础机制,并未提供真正实用的协程库(在 C++23 中可能会改善)。目前要用协程写实际业务的话,可以借助开源库,比如著名的 cppcoro[2]。然而对于本文所述的场景,cppcoro 也没有直接提供对应的工具(generator 经过适当的包装可以解决这个问题,但是不太直观),因此我自己写了一个切割任务的协程工具类用于示例。

自定义的协程工具


下面是我写的 SegmentedTask 工具类的代码。这段代码看起来相当复杂,但是它作为可重用的工具存在,没有必要让程序员都理解它的内部实现,一般只要知道它怎么用就行了。SegmentedTask 的使用很容易:它只有 3 个对外接口:ResumeIsFinished GetReturnValue,其功能可根据接口名字自解释。


#include <optional>#include <coroutine>
template<typename T>class SegmentedTask {public: struct promise_type { SegmentedTask<T> get_return_object() { return SegmentedTask{Handle::from_promise(*this)}; }
static std::suspend_never initial_suspend() noexcept { return {}; } static std::suspend_always final_suspend() noexcept { return {}; } std::suspend_always yield_value(std::nullopt_t) noexcept { return {}; }
std::suspend_never return_value(T value) noexcept { returnValue = value; return {}; }
static void unhandled_exception() { throw; }
std::optional<T> returnValue; }; using Handle = std::coroutine_handle<promise_type>; explicit SegmentedTask(const Handle coroutine) : coroutine{coroutine} {} ~SegmentedTask() { if (coroutine) { coroutine.destroy(); } } SegmentedTask(const SegmentedTask&) = delete; SegmentedTask& operator=(const SegmentedTask&) = delete; SegmentedTask(SegmentedTask&& other) noexcept : coroutine(other.coroutine) { other.coroutine = {}; }
SegmentedTask& operator=(SegmentedTask&& other) noexcept { if (this != &other) { if (coroutine) { coroutine.destroy(); } coroutine = other.coroutine; other.coroutine = {}; } return *this; }
void Resume() const { coroutine.resume(); } bool IsFinished() const { return coroutine.promise().returnValue.has_value(); } T GetReturnValue() const { return coroutine.promise().returnValue.value(); } private: Handle coroutine;};
复制代码


自己编写协程的工具类不光需要深入了解 C++协程机制,而且很容易产生悬空引用等未定义行为。因此强烈建议项目组统一使用编写好的协程类。如果读者想深入学习协程工具的编写方法,可以参考 Rainer Grimm 的博客文章[3]。


接下来,我们使用 SegmentedTask 来改造前面的事件处理代码。当一个 C++函数中使用了 co_awaitco_yieldco_return 中的任何一个关键字时,这个函数就变成了协程,其返回值也会变成对应的协程工具类。在示例代码中,需要内层函数提前返回时,使用的是 co_yield。但是 C++20 的 co_yield 后必须跟随一个表达式,这个表达式在示例场景下并没必要,就用了 std::nullopt 让其能编译通过。实际业务环境下,co_yield 可以返回一个数字或者对象用于表示当前任务执行的进度,方便外层查询。


协程不能使用普通 return 语句,必须使用 co_return 来返回值,而且其返回类型也不直接等同于 co_return 后面的表达式类型。


enum class EventType {    COMMAND,    MESSAGE,    ALARM};
std::vector<EventType> g_events{EventType::COMMAND, EventType::ALARM};std::optional<SegmentedTask<int>> suspended; // 没有执行完的任务保存在这里
SegmentedTask<int> ProcessCmd(){ for (int i{0}; i < 10; ++i) { std::cout << "Processing step " << i << std::endl; co_yield std::nullopt; } co_return 0;}
void ProcessMsg(){ std::cout << "Processing Message" << std::endl;}
void ProcessAlm(){ std::cout << "Processing Alarm" << std::endl;}
int main(){ for (auto event : g_events) { switch (event) { case EventType::COMMAND: suspended = ProcessCmd(); break; case EventType::MESSAGE: ProcessMsg(); break; case EventType::ALARM: ProcessAlm(); break; } } while (suspended.has_value() && !suspended->IsFinished()) { suspended->Resume(); } if (suspended.has_value()) { std::cout << "Final return: " << suspended->GetReturnValue() << endl; } return 0;}
复制代码


出于让示例简单的目的,事件队列中只放入了一个 COMMAND 和一个 ALARMCOMMAND 是可以分段执行的协程,执行完第一段后,主循环会优先执行队列中剩下的事件,最后再来继续执行 COMMAND 余下的部分。实际场景下,可根据需要灵活选择各种调度策略,比如专门用一个队列存放所有未执行完的分段任务,并在空闲时依次执行。


本文中的代码使用 gcc 10.3 版本编译运行,编译时需要同时加上-std=c++20 -fcoroutines 两个参数才能支持协程。代码运行结果如下:


Processing step 0Processing AlarmProcessing step 1Processing step 2Processing step 3Processing step 4Processing step 5Processing step 6Processing step 7Processing step 8Processing step 9Final return: 0
复制代码


​可以看到 ProcessCmd 函数(协程)的 for 循环语句并没有一次执行完,在中间插入了 ProcessAlm 的执行。如果分析运行线程还会发现,整个过程中并没有物理线程的切换,所有代码都是在同一个线程上顺序执行的。


使用了协程的顺序图变成了这样:



​事件处理函数的执行时间长不再是问题,因为可以中途“插入”其他的函数运行,之后再返回断点继续向下运行。

总结


一个较普遍的认识误区是:使用多线程可以提升软件性能。但事实上,只要 CPU 没有空跑,那么当物理线程数超过了 CPU 核数,就不再会提升性能,相反还会由于线程的切换开销而降低性能。大多数开发实践中,并发编程的主要好处并非为了提升性能,而是为了编码的方便,因为现实中的场景模型很多都是并发的,容易直接对应成多线程代码。


协程可以像多线程那样方便直观的编码,但是同时又没有物理线程的开销,更没有互斥、同步等并发编程中令人头大的设计负担,在嵌入式应用等很多场景下,常常是比物理线程更好的选择。


相信随着 C++20 的逐步普及,协程将来会得到越来越广泛的使用。

尾注


[1] https://en.wikipedia.org/wiki/Coroutine

[2] https://github.com/lewissbaker/cppcoro

[3] https://www.modernescpp.com/index.php/tag/coroutines


点击关注,第一时间了解华为云新鲜技术~

发布于: 2021 年 05 月 17 日阅读数: 67
用户头像

提供全面深入的云计算技术干货 2020.07.14 加入

华为云开发者社区,提供全面深入的云计算前景分析、丰富的技术干货、程序样例,分享华为云前沿资讯动态,方便开发者快速成长与发展,欢迎提问、互动,多方位了解云计算! 传送门:https://bbs.huaweicloud.com/

评论

发布
暂无评论
比物理线程都好用的C++20的协程,你会用吗?