初识 Hadoop 之概念认知篇
Hadoop 作为大数据的支撑,那么我们会有一些疑问,什么是 Hadoop,Hadoop 能够做些什么,它的优点是什么,它是如何进行海量数据的操作的。相信这些疑问,一定在此时困扰着你,不要担心,下面我们一步一步的去认识 Hadoop 这个神奇的的小象!
起源
从 1946 年开始计算机的诞生,再到如今的 2020 年人工智能大数据时代,我们的数据一直在呈现级数似的增长,在过去的十几年来看,可能不是特别的明显,但是近几年的数据量,我们称之为海量数据都感觉无法定义它的庞大了。特别是在今年的疫情面前,我们人类,我们中国的大数据的作用,为我们的疫情防控做出来凸出的贡献,相信大家无论是在新闻还是网络上面都是特别的清楚——人工智能——大数据——AI 这些新时代下的科技产物,造福者我们每一个人类!
然而在从基础的文件数据开始再到现在的数据仓库,我们的进步无时无刻都在激励着我们一代又一代的 IT 之人才。2011 年 5 月提出了“大数据”的概念。
大数据的几个特点:1.数据量大 2.数据类型多 3.处理速度低(1 秒定律)4.价值密度低:比如教室里面的监控器,每一天都在开启,但是真正的发挥作用的时候,也就只有在发现“美好的事物”之后,才会有所价值。
Google 的“三驾马车”改变了传统的认知
依靠 Google 公司的三篇论文,GFS,MapReduce,BigTab,神奇的火花就这样碰撞的产生了,为我们的大数据技术奠定了有力的基础,具有划时代的意义。
GFS 思想
分布式文件系统有两个基本的组成部分,一个是客户端,一个是服务端。我们发现服务端的硬盘和安全性不够明显,这个时候我们的 GFS 就解决了这个问题。我们会增加一个管理节点,去管理这些存放数据的主机。存放数据的主机我们称之为数据节点,而上传的文件会按照固定的大小进行分块。数据节点上保存的数据块,而非独立的文件。数据块的冗余默认为 3.
上传文件时,客户端会首先连接管理节点,管理节点会生成数据块的信息,包括文件名,大小,上传时间,数据块的位置信息等。这些信息成为文件的元数据,它会保存在管理节点。客户端获取了这些元数据之后,就会开始把数据块一个一个的上传。客户端把数据块先上传到第一个数据节点,然后在管理节点的管理下,通过水平复制,复制和分配到其他节点(主机),最终就达到了,冗余度的要求。
数据块存储在 hdfs 中的最小单位
默认大小 128M
元数据查看 fsimage 整个文件系统命名空间(包括块到文件和文件系统属性的映射)hdfs oiv -i 要查看的文件名 -o 输出的文件名 -p XML 查看 edites 文件系统元数据发生的每个更改 hdfs oev -i 要查看的文件名 -o 输出的文件名 namenode 启动过程加载 fsimage 加载 edites 进行检查点保存等待 datanode 汇报块信息 datanode 启动后扫描本地块的信息汇报给 namenode
心跳机制 GFS Master 与每个服务器通信(保证它是活的),这样就满足了最大化数据的可靠性和可用性
MapReduce 思想
主要介绍它的“分而治之”的思想,首先我们介绍一个网页级别,对于多个网页(几亿份),作为一个矩阵的运算已经无法满足了,那么怎么办了,我们就采用对每个小的矩阵块进行计算,之后这样的不断的叠加,最后的运算和汇总结果。其实这个思想比较的具有时代化的超越性,不管是在计算机的运用里面,还是在我们日常的学习和生活中“分散任务,汇总结果”是最实用的。
BigTable 思想
igTable 最基本的思想是把所有的数据都存入一张表。BigTable 的思想,利于海量数据的检索,在大数据时代可以显著提高数据的查询效率,但是对数据的新增,修改,删除是不利的。
HDFS
HDFS 是 Hadoop 项目的核心子项目,是分布式计算中的储存管理的基础。
HDFS,是 Hadoop Distributed File System 的简称,是 Hadoop 抽象文件系统的一种实现。Hadoop 抽象文件系统可以与本地系统、Amazon S3 等集成,甚至可以通过 Web 协议(webhsfs)来操作。HDFS 的文件分布在集群机器上,同时提供副本进行容错及可靠性保证。例如客户端写入读取文件的直接操作都是分布在集群各个机器上的,没有单点性能压力。
对于机架感与副本冗余储存策略:比如我们的副本一保存在机架 1 上,处于安全考虑我们的副本 2 会和副本一保存在不同的机架上,这里我们保存在机架 2 上,对于副本三我们应该保存在和副本二一样的机架上面,这个是处于效率的考虑,假设我们的副本二损坏了,那么就近原则从同一个机架的其他主机获取。
Hadoop 的特点
1.高可靠性 2.高扩展性 3.高效性 4.高容错性
Hadoop 生态圈
Hadoop 的核心组件是 HDFS、MapReduce。随着处理任务不同,各种组件相继出现,丰富 Hadoop 生态圈,目前生态圈结构大致如图所示:
根据服务对象和层次分为:数据来源层、数据传输层、数据存储层、资源管理层、数据计算层、任务调度层、业务模型层。
Hadoop 不适合应用于实时查询的事件
Hadoop 的安装和环境搭建配置
HDFS(分布式文件系统)
HDFS 是整个 hadoop 体系的基础,负责数据的存储与管理。HDFS 有着高容错性(fault-tolerant)的特点,并且设计用来部署在低廉的(low-cost)硬件上。而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。
client:切分文件,访问 HDFS 时,首先与 NameNode 交互,获取目标文件的位置信息,然后与 DataNode 交互,读写数据
DataNode:slave 节点,存储实际数据,并汇报状态信息给 NameNode,默认一个文件会备份 3 份在不同的 DataNode 中,实现高可靠性和容错性。
Secondary NameNode:辅助 NameNode,实现高可靠性,定期合并 fsimage 和 fsedits,推送给 NameNode;紧急情况下辅助和恢复 NameNode,但其并非 NameNode 的热备份。
安装好之后,我们先启动 Hadoop
等待之后输入
查看即可,就会出现上面的不同运行机制
HDFS 不适合的应用类型
1) 低延时的数据访问对延时要求在毫秒级别的应用,不适合采用 HDFS。HDFS 是为高吞吐数据传输设计的,因此可能牺牲延时 HBase 更适合低延时的数据访问。
2)大量小文件文件的元数据(如目录结构,文件 block 的节点列表,block-node mapping)保存在 NameNode 的内存中, 整个文件系统的文件数量会受限于 NameNode 的内存大小。经验而言,一个文件/目录/文件块一般占有 150 字节的元数据内存空间。如果有 100 万个文件,每个文件占用 1 个文件块,则需要大约 300M 的内存。因此十亿级别的文件数量在现有商用机器上难以支持。
3)多方读写,需要任意的文件修改 HDFS 采用追加(append-only)的方式写入数据。不支持文件任意 offset 的修改。不支持多个写入器(writer)。
这里只是简单的介绍一下 Hadoop 里面的 HDFS,后期我们详细的介绍的。
每文一语
只要选择了开始,就不要停止脚步,沿途的风景再美好,也无法和终点的景色相媲美!
版权声明: 本文为 InfoQ 作者【王小王-123】的原创文章。
原文链接:【http://xie.infoq.cn/article/2e99710bb06d38840aa69d5d6】。文章转载请联系作者。
评论