Sentienl 动态数据源架构设计理念与改造实践,阿里 P8 大牛手把手教你
在 Sentinel 中主要有如下几个角色:管理后台、限流熔断规则数据源、应用程序。
1)管理后台
管理后台主要用于可视化配置限流规则、熔断规则,其操作界面截图如下:
2)限流熔断规则数据源
用于存储限流熔断规则的数据容器,在 Sentinel 中对应动态数据源这个概念,动态数据源包含两层含义:
数据容器
数据容器指的就是存储熔断、限流等规则配置的数据库,例如关系型数据库、Zookeeper 等等,在实际生产过程中需要选用支持持久化功能的数据库,否则程序一重启,配置规则就会丢失,显然是不能接受的。
动态
动态二字主要强调的是配置规则的更改能动态及时生效,引入 Sentinel 限流 SDK 的应用程序在不需要重启的情况下动态感知配置规则发生变化并立即生效。Sentinel 目前对 apollo、consul、etcd、nacos、redis、spring-clould-config、zookeeper 等进行了适配支持。
3)应用程序
希望通过 Sentinel 提供的限流、熔断功能对应用程序加以保护,需要引用 Sentinel 相关的 SDK,根据采集的调用信息判断当前是否符合限流规则。
后台管理系统、动态数据源、应用程序的关系如图所示:
从官方的文档中可以明确获悉 sentinel-dashboard 即官方自带的后台管理系统只支持将限流、熔断等限流配置规则存储在内存中,一旦后台管理系统重启,配置的熔断规则将全部丢失,所以在生产实践过程中需要对 sentinel-dashboard 进行一定的改造,引入动态数据源,例如 Zookeeper,对限流等配置进行持久化存储。
有了上面的架构设计理念为我们的改造提供了方向,那如何具体改造呢?首先我们来看一下官方提供的 Demo 程序。官方提供的示例代码如下图所示:
接下来我们将以 zookeeper 动态数据源来介绍基于 zookeeper 如何构建 Sentinel 动态数据源。
2.1 限流熔断等规则存储
首先查阅一下 ZookeeperConfigSender,该类主要的作用是将配置写入到 zookeeper 中,其关键代码截图如下:
这个类的测试目的很简单,先将限流规则持久化到 Zookeeper 中,充当的角色与 sentinel-dashboard 的角色一致,故这个类为我们改造后台管理系统带来很大的启发,即可以通过 zookeeper 存储 sentinel 限流规则,从 demo 示例可以看出限流规则在 zookeeper 中的目录结构,路径为 /{groupId} / {dataid} ,该节点的 value 值存储 json 字符串,存储所有的限流规则。
实践指导,通常基于 zookeeper 的开发,主要是规划好目录结构,关于 Sentinel,我对给出一个初步的目录规划。
在 zookeeper 中创建一个根节点,例如 /sentienl 用来表示限流相关的根目录。
groupId 通常为一个独立的应用名称,例如应用的 appId,例如示例中的 provider-demo。
dataId 通常为配置类型,例如限流规则、熔断规则、热点规则等类别,例如限流规则使用 /flowRule ,熔断规则使用 /degradeRule,其 value 值使用 json 存储,将该应用下的所有限流规则用一个 json 对象表示,其存储格式类似于 [{},{}]。
2.2 客户端动态感知配置
实现存储规则的配置存储后接下来是需要客户端能动态感知规则的变化,从而是配置规则实时生效。
我们依然先来看一下官方示例,其核心代码如图所示:
这里尽管引入 groupId 与 dataId 的概念是方便与 nacos 进行切换,但就算不切换,基于 zookeeper 的编程,这种目录规划是非常有必要的。上面的示例代码有两个关键点:
创建 ZookeeperDataSource,每一个 ZookeeperDataSource 负责监听一个节点。
需要调用 FlowRuleManager 的 register2Property 方法将数据源关联的数据注册到 FlowRuleManager 中,方便 Sentinel 内核根据数据源中存储的限流熔断等规则进行工作。
客户端在启动的时候会调用 FlowRuleManager 相关方法加载限流相关的配置,那如果配置规则发生变化后,客户端如何动态感知呢?其关键就在于 ZookeeperDataSource 的实现中,其实现关键点如下:
即在构建 ZookeeperDataSource 时会监听 /groupId/dataId 节点,即存放限流配置的节点,一旦数据发生变化,就会通知到客户端,从而调用 loadConfig 重新更新 Sentienl 客户端的限流配置,从而实现配置实时生效。
、Sentinel 引入 Zookeeper 动态数据源实现方案
从官方的示例中我们不难发现,引入 Zookeeper 数据源主要有两个步骤:将数据存储在 Zookeeper 中以及在客户端监听 ZK 从而实时生效两个步骤。
sentinel 官方提供了默认的后台管理系统实现:sentinel-dashboard,但其缺点非常明显:基于内存存储,无法用于实际生产过程。大家可能会向后台管理系统将配置信息存储在内存中,那接入的客户端如何从 sentinel-dashboard 的内存中获取配置信息呢,这是因为 sentinel-dashboard 里提供了简单的机器发现,并且内置了 sentinel 客户端之间、sentinel 客户端与 sentinel-dashboard 之间的通讯协议,具体由 sentinel-transport 模块实现,目前提供了基于 http 与 netty 的实现方式,故能将 sentinel-dashboard 内存中的配置信息推送到客户端,从而使客户端根据配置进行限流与熔断。
接下来回答本文的重点部分,基于 sentinel-dashboard 如何引入 zookeeper 等动态数据源呢?
3.1 将配置规则存储在 Zookeeper 中
首先我们可以顺着 sentinel-dashboard 的提供的控制器,寻找其后台入口,改造目标也很明确,就是将数据持久化到 zookeeper 中,例如增加流控规则的后台处理入口为:
Sentinel 动态数据源架构设计理念与改造实践
只需要从这里开始改造,将其配置持久化到数据库中和 zookeeper 中即可。
将数据存储在 zookeeper 中,其关键是设计好各个项目如何有组织有条理的在 zookeeper 中进行组织。我给出如下设计方案:
这样相关管理人员可以直接在 sentinel-dashboard 中配置限流规则,即按照应用为维度进行存储,每一个应用再按照维度,例如限流、熔断、热点、集群等维度进行配置,每一分类节点的值存储的是所有的配置,使用 [{},{}] 这种 JSON 格式进行存储。
评论