我们知道在 java 中可以直接打印字符串等内容,但是直接将对象进行打印输出时,并不会输出具体值
而是一些奇怪的东西,如创建一个学生对象并打印学生对象结果如下:
输出结果为: Student@16d3586,为什么会输出这么一个结果呢?
通过查看 java API 我们可以得知,Java 直接输出一个类的对象的时候,会自动调用这个类的toString
方法
这个方法在位于 object 类中的,而在 Java 中所有的类都继承 Object 类,所以所有的类都有toString
方法。
通过源码我们发现该方法的实现是这样的:
getClass().getName()+'@'+Integer.toHexString(hashCode())
复制代码
输出的结果是:
类所在的包名.类名 + @ + 哈希码值
我们尝试获取一个对象的哈希值,打印结果如下
那么 hashcode() 获取的哈希码又是什么东西呢?
哈希码表示的是 JVM 虚拟机为这个 Object 对象分配的一个 int 类型的数值
JVM 会使用对象的 hashcode 值来提高对 HashMap、Hashtable 哈希表存取对象的使用效率
具体如何生成的呢,?紧接着我们进入源码去具体分析:
首先通过以下地址下载源码:
openJDK 7 下载地址 1:http://download.java.net/openjdk/jdk7 。
获取源码以后进入 openjdk\jdk\src\share\classes\java\lang 目录下
可以看到 Object.java 源码,打开,查看**hashCode()**的定义如下所示:
public native int hashCode();
native 表示该方法是一个本地方法,Java 将调用本地方法库对此方法的实现。
由于 Object 类中有 JNI 方法调用,按照 JNI 的规则,应当生成 JNI 的头文件
在此目录下执行 javah -jni java.lang.Object 指令
将生成一 java_lang_Object.h 头文件
java_lang_Object.h 头文件关于 hashcode 方法的信息如下所示:
/*
* Class: java_lang_Object
* Method: hashCode
* Signature: ()I
*/
JNIEXPORT jint JNICALL Java_java_lang_Object_hashCode
(JNIEnv *, jobject);
复制代码
然后我们再 打开 **openjdk\jdk\src\share\native\java\lang\ **目录
查看 Object.c 文件,可以看到 hashCode() 的方法被注册成有 JVM_IHashCode 方法指针来处理:
#include #include#include#include "jni.h"
#include "jni_util.h"
#include "jvm.h"
#include "java_lang_Object.h"
static JNINativeMethod methods[] = {
{"hashCode", "()I", (void *)&JVM_IHashCode}, //hashcode的方法指针JVM_IHashCode
{"wait", "(J)V", (void *)&JVM_MonitorWait},
{"notify", "()V", (void *)&JVM_MonitorNotify},
{"notifyAll", "()V", (void *)&JVM_MonitorNotifyAll},
{"clone", "()Ljava/lang/Object;", (void *)&JVM_Clone},
};
JNIEXPORT void JNICALL
Java_java_lang_Object_registerNatives(JNIEnv *env, jclass cls)
{
(*env)->RegisterNatives(env, cls,
methods, sizeof(methods)/sizeof(methods[0]));
}
JNIEXPORT jclass JNICALL
Java_java_lang_Object_getClass(JNIEnv *env, jobject this)
{
if (this == NULL) {
JNU_ThrowNullPointerException(env, NULL);
return 0;
} else {
return (*env)->GetObjectClass(env, this);
}
}
复制代码
JVM_IHashCode 方法指针在 openjdk\hotspot\src\share\vm\prims\jvm.cpp 中定义,
如下:
JVM_ENTRY(jint, JVM_IHashCode(JNIEnv* env, jobject handle))
JVMWrapper("JVM_IHashCode");
// as implemented in the classic virtual machine; return 0 if object is NULL
return handle == NULL ? 0 : ObjectSynchronizer::FastHashCode (THREAD, JNIHandles::resolve_non_null(handle)) ;
JVM_END
复制代码
如上可以看出,JVM_IHashCode 方法中调用了 ObjectSynchronizer::FastHashCode 方法
**ObjectSynchronizer::fashHashCode()**方法在
openjdk\hotspot\src\share\vm\runtime\synchronizer.cpp 文件中实现,其核心代码实现如下所示:
// hashCode() generation :
//
// Possibilities:
// * MD5Digest of {obj,stwRandom}
// * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
// * A DES- or AES-style SBox[] mechanism
// * One of the Phi-based schemes, such as:
// 2654435761 = 2^32 * Phi (golden ratio)
// HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
// * A variation of Marsaglia's shift-xor RNG scheme.
// * (obj ^ stwRandom) is appealing, but can result
// in undesirable regularity in the hashCode values of adjacent objects
// (objects allocated back-to-back, in particular). This could potentially
// result in hashtable collisions and reduced hashtable efficiency.
// There are simple ways to "diffuse" the middle address bits over the
// generated hashCode values:
//
static inline intptr_t get_next_hash(Thread * Self, oop obj) {
intptr_t value = 0 ;
if (hashCode == 0) {
// This form uses an unguarded global Park-Miller RNG,
// so it's possible for two threads to race and generate the same RNG.
// On MP system we'll have lots of RW access to a global, so the
// mechanism induces lots of coherency traffic.
value = os::random() ;
} else
if (hashCode == 1) {
// This variation has the property of being stable (idempotent)
// between STW operations. This can be useful in some of the 1-0
// synchronization schemes.
intptr_t addrBits = intptr_t(obj) >> 3 ;
value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;
} else
if (hashCode == 2) {
value = 1 ; // for sensitivity testing
} else
if (hashCode == 3) {
value = ++GVars.hcSequence ;
} else
if (hashCode == 4) {
value = intptr_t(obj) ;
} else {
// Marsaglia's xor-shift scheme with thread-specific state
// This is probably the best overall implementation -- we'll
// likely make this the default in future releases.
unsigned t = Self->_hashStateX ;
t ^= (t << 11) ;
Self->_hashStateX = Self->_hashStateY ;
Self->_hashStateY = Self->_hashStateZ ;
Self->_hashStateZ = Self->_hashStateW ;
unsigned v = Self->_hashStateW ;
v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;
Self->_hashStateW = v ;
value = v ;
}
value &= markOopDesc::hash_mask;
if (value == 0) value = 0xBAD ;
assert (value != markOopDesc::no_hash, "invariant") ;
TEVENT (hashCode: GENERATE) ;
return value;
}
// ObjectSynchronizer::FastHashCode方法的实现,该方法最终会返回我们期望已久的hashcode
intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) {
if (UseBiasedLocking) {
// NOTE: many places throughout the JVM do not expect a safepoint
// to be taken here, in particular most operations on perm gen
// objects. However, we only ever bias Java instances and all of
// the call sites of identity_hash that might revoke biases have
// been checked to make sure they can handle a safepoint. The
// added check of the bias pattern is to avoid useless calls to
// thread-local storage.
if (obj->mark()->has_bias_pattern()) {
// Box and unbox the raw reference just in case we cause a STW safepoint.
Handle hobj (Self, obj) ;
// Relaxing assertion for bug 6320749.
assert (Universe::verify_in_progress() ||
!SafepointSynchronize::is_at_safepoint(),
"biases should not be seen by VM thread here");
BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
obj = hobj() ;
assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
}
}
// hashCode() is a heap mutator ...
// Relaxing assertion for bug 6320749.
assert (Universe::verify_in_progress() ||
!SafepointSynchronize::is_at_safepoint(), "invariant") ;
assert (Universe::verify_in_progress() ||
Self->is_Java_thread() , "invariant") ;
assert (Universe::verify_in_progress() ||
((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
ObjectMonitor* monitor = NULL;
markOop temp, test;
intptr_t hash;
markOop mark = ReadStableMark (obj);
// object should remain ineligible for biased locking
assert (!mark->has_bias_pattern(), "invariant") ;
if (mark->is_neutral()) {
hash = mark->hash(); // this is a normal header
if (hash) { // if it has hash, just return it
return hash;
}
hash = get_next_hash(Self, obj); // allocate a new hash code
temp = mark->copy_set_hash(hash); // merge the hash code into header
// use (machine word version) atomic operation to install the hash
test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
if (test == mark) {
return hash;
}
// If atomic operation failed, we must inflate the header
// into heavy weight monitor. We could add more code here
// for fast path, but it does not worth the complexity.
} else if (mark->has_monitor()) {
monitor = mark->monitor();
temp = monitor->header();
assert (temp->is_neutral(), "invariant") ;
hash = temp->hash();
if (hash) {
return hash;
}
// Skip to the following code to reduce code size
} else if (Self->is_lock_owned((address)mark->locker())) {
temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
assert (temp->is_neutral(), "invariant") ;
hash = temp->hash(); // by current thread, check if the displaced
if (hash) { // header contains hash code
return hash;
}
// WARNING:
// The displaced header is strictly immutable.
// It can NOT be changed in ANY cases. So we have
// to inflate the header into heavyweight monitor
// even the current thread owns the lock. The reason
// is the BasicLock (stack slot) will be asynchronously
// read by other threads during the inflate() function.
// Any change to stack may not propagate to other threads
// correctly.
}
// Inflate the monitor to set hash code
monitor = ObjectSynchronizer::inflate(Self, obj);
// Load displaced header and check it has hash code
mark = monitor->header();
assert (mark->is_neutral(), "invariant") ;
hash = mark->hash();
if (hash == 0) {
hash = get_next_hash(Self, obj);
temp = mark->copy_set_hash(hash); // merge hash code into header
assert (temp->is_neutral(), "invariant") ;
test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
if (test != mark) {
// The only update to the header in the monitor (outside GC)
// is install the hash code. If someone add new usage of
// displaced header, please update this code
hash = test->hash();
assert (test->is_neutral(), "invariant") ;
assert (hash != 0, "Trivial unexpected object/monitor header usage.");
}
}
return hash;
}
复制代码
通过如此复杂的步骤我们终于获取到哈希码值。
而我们在实际开发中,很多时候我们并不想打印对象的哈希码值
而是想获取该对象的具体属性,这个时候该怎么做呢?
我们已知直接打印对象时会自动调用toString
方法
该方法是继承于 Object 类,所以为了能改变内容
很显然我们需要进行toString
方法的重写,如下:
@Override
public String toString() {
return "Student{" +
"id=" + id +
", name='" + name + '\'' +
", age=" + age +
'}';
}
复制代码
重写以后发现我们打印内容不再是哈希码值,而是替换成我们自己想要获取的属性值
评论