写点什么

JAVA 对象直接输出的打印结果是什么?

用户头像
加百利
关注
发布于: 2021 年 06 月 12 日
JAVA对象直接输出的打印结果是什么?

我们知道在 java 中可以直接打印字符串等内容,但是直接将对象进行打印输出时,并不会输出具体值


而是一些奇怪的东西,如创建一个学生对象并打印学生对象结果如下:



输出结果为: Student@16d3586,为什么会输出这么一个结果呢?


通过查看 java API 我们可以得知,Java 直接输出一个类的对象的时候,会自动调用这个类的toString方法


这个方法在位于 object 类中的,而在 Java 中所有的类都继承 Object 类,所以所有的类都有toString方法。


通过源码我们发现该方法的实现是这样的:


getClass().getName()+'@'+Integer.toHexString(hashCode())
复制代码


输出的结果是:


类所在的包名.类名 + @ + 哈希码值


我们尝试获取一个对象的哈希值,打印结果如下


那么 hashcode() 获取的哈希码又是什么东西呢?


哈希码表示的是 JVM 虚拟机为这个 Object 对象分配的一个 int 类型的数值


JVM 会使用对象的 hashcode 值来提高对 HashMap、Hashtable 哈希表存取对象的使用效率


具体如何生成的呢,?紧接着我们进入源码去具体分析:


首先通过以下地址下载源码:


openJDK 7 下载地址 1:http://download.java.net/openjdk/jdk7


获取源码以后进入 openjdk\jdk\src\share\classes\java\lang 目录下


可以看到 Object.java 源码,打开,查看**hashCode()**的定义如下所示:


public native int hashCode();


native 表示该方法是一个本地方法,Java 将调用本地方法库对此方法的实现。


由于 Object 类中有 JNI 方法调用,按照 JNI 的规则,应当生成 JNI 的头文件


在此目录下执行 javah -jni java.lang.Object 指令


将生成一 java_lang_Object.h 头文件


java_lang_Object.h 头文件关于 hashcode 方法的信息如下所示:


/** Class:     java_lang_Object* Method:    hashCode* Signature: ()I*/JNIEXPORT jint JNICALL Java_java_lang_Object_hashCode (JNIEnv *, jobject);
复制代码


然后我们再 打开 **openjdk\jdk\src\share\native\java\lang\ **目录


查看 Object.c 文件,可以看到 hashCode() 的方法被注册成有 JVM_IHashCode 方法指针来处理:


#include #include#include#include "jni.h"#include "jni_util.h"#include "jvm.h"
#include "java_lang_Object.h"
static JNINativeMethod methods[] = { {"hashCode", "()I", (void *)&JVM_IHashCode}, //hashcode的方法指针JVM_IHashCode {"wait", "(J)V", (void *)&JVM_MonitorWait}, {"notify", "()V", (void *)&JVM_MonitorNotify}, {"notifyAll", "()V", (void *)&JVM_MonitorNotifyAll}, {"clone", "()Ljava/lang/Object;", (void *)&JVM_Clone},};
JNIEXPORT void JNICALLJava_java_lang_Object_registerNatives(JNIEnv *env, jclass cls){ (*env)->RegisterNatives(env, cls, methods, sizeof(methods)/sizeof(methods[0]));}
JNIEXPORT jclass JNICALLJava_java_lang_Object_getClass(JNIEnv *env, jobject this){ if (this == NULL) { JNU_ThrowNullPointerException(env, NULL); return 0; } else { return (*env)->GetObjectClass(env, this); }}
复制代码


JVM_IHashCode 方法指针在 openjdk\hotspot\src\share\vm\prims\jvm.cpp 中定义,


如下:


JVM_ENTRY(jint, JVM_IHashCode(JNIEnv* env, jobject handle)) JVMWrapper("JVM_IHashCode"); // as implemented in the classic virtual machine; return 0 if object is NULL return handle == NULL ? 0 : ObjectSynchronizer::FastHashCode (THREAD, JNIHandles::resolve_non_null(handle)) ;JVM_END
复制代码


如上可以看出,JVM_IHashCode 方法中调用了 ObjectSynchronizer::FastHashCode 方法


**ObjectSynchronizer::fashHashCode()**方法在


openjdk\hotspot\src\share\vm\runtime\synchronizer.cpp 文件中实现,其核心代码实现如下所示:


// hashCode() generation ://// Possibilities:// * MD5Digest of {obj,stwRandom}// * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.// * A DES- or AES-style SBox[] mechanism// * One of the Phi-based schemes, such as://   2654435761 = 2^32 * Phi (golden ratio)//   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;// * A variation of Marsaglia's shift-xor RNG scheme.// * (obj ^ stwRandom) is appealing, but can result//   in undesirable regularity in the hashCode values of adjacent objects//   (objects allocated back-to-back, in particular).  This could potentially//   result in hashtable collisions and reduced hashtable efficiency.//   There are simple ways to "diffuse" the middle address bits over the//   generated hashCode values://
static inline intptr_t get_next_hash(Thread * Self, oop obj) { intptr_t value = 0 ; if (hashCode == 0) { // This form uses an unguarded global Park-Miller RNG, // so it's possible for two threads to race and generate the same RNG. // On MP system we'll have lots of RW access to a global, so the // mechanism induces lots of coherency traffic. value = os::random() ; } else if (hashCode == 1) { // This variation has the property of being stable (idempotent) // between STW operations. This can be useful in some of the 1-0 // synchronization schemes. intptr_t addrBits = intptr_t(obj) >> 3 ; value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ; } else if (hashCode == 2) { value = 1 ; // for sensitivity testing } else if (hashCode == 3) { value = ++GVars.hcSequence ; } else if (hashCode == 4) { value = intptr_t(obj) ; } else { // Marsaglia's xor-shift scheme with thread-specific state // This is probably the best overall implementation -- we'll // likely make this the default in future releases. unsigned t = Self->_hashStateX ; t ^= (t << 11) ; Self->_hashStateX = Self->_hashStateY ; Self->_hashStateY = Self->_hashStateZ ; Self->_hashStateZ = Self->_hashStateW ; unsigned v = Self->_hashStateW ; v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ; Self->_hashStateW = v ; value = v ; }
value &= markOopDesc::hash_mask; if (value == 0) value = 0xBAD ; assert (value != markOopDesc::no_hash, "invariant") ; TEVENT (hashCode: GENERATE) ; return value;}// ObjectSynchronizer::FastHashCode方法的实现,该方法最终会返回我们期望已久的hashcodeintptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) { if (UseBiasedLocking) { // NOTE: many places throughout the JVM do not expect a safepoint // to be taken here, in particular most operations on perm gen // objects. However, we only ever bias Java instances and all of // the call sites of identity_hash that might revoke biases have // been checked to make sure they can handle a safepoint. The // added check of the bias pattern is to avoid useless calls to // thread-local storage. if (obj->mark()->has_bias_pattern()) { // Box and unbox the raw reference just in case we cause a STW safepoint. Handle hobj (Self, obj) ; // Relaxing assertion for bug 6320749. assert (Universe::verify_in_progress() || !SafepointSynchronize::is_at_safepoint(), "biases should not be seen by VM thread here"); BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current()); obj = hobj() ; assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now"); } }
// hashCode() is a heap mutator ... // Relaxing assertion for bug 6320749. assert (Universe::verify_in_progress() || !SafepointSynchronize::is_at_safepoint(), "invariant") ; assert (Universe::verify_in_progress() || Self->is_Java_thread() , "invariant") ; assert (Universe::verify_in_progress() || ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
ObjectMonitor* monitor = NULL; markOop temp, test; intptr_t hash; markOop mark = ReadStableMark (obj);
// object should remain ineligible for biased locking assert (!mark->has_bias_pattern(), "invariant") ;
if (mark->is_neutral()) { hash = mark->hash(); // this is a normal header if (hash) { // if it has hash, just return it return hash; } hash = get_next_hash(Self, obj); // allocate a new hash code temp = mark->copy_set_hash(hash); // merge the hash code into header // use (machine word version) atomic operation to install the hash test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark); if (test == mark) { return hash; } // If atomic operation failed, we must inflate the header // into heavy weight monitor. We could add more code here // for fast path, but it does not worth the complexity. } else if (mark->has_monitor()) { monitor = mark->monitor(); temp = monitor->header(); assert (temp->is_neutral(), "invariant") ; hash = temp->hash(); if (hash) { return hash; } // Skip to the following code to reduce code size } else if (Self->is_lock_owned((address)mark->locker())) { temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned assert (temp->is_neutral(), "invariant") ; hash = temp->hash(); // by current thread, check if the displaced if (hash) { // header contains hash code return hash; } // WARNING: // The displaced header is strictly immutable. // It can NOT be changed in ANY cases. So we have // to inflate the header into heavyweight monitor // even the current thread owns the lock. The reason // is the BasicLock (stack slot) will be asynchronously // read by other threads during the inflate() function. // Any change to stack may not propagate to other threads // correctly. }
// Inflate the monitor to set hash code monitor = ObjectSynchronizer::inflate(Self, obj); // Load displaced header and check it has hash code mark = monitor->header(); assert (mark->is_neutral(), "invariant") ; hash = mark->hash(); if (hash == 0) { hash = get_next_hash(Self, obj); temp = mark->copy_set_hash(hash); // merge hash code into header assert (temp->is_neutral(), "invariant") ; test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark); if (test != mark) { // The only update to the header in the monitor (outside GC) // is install the hash code. If someone add new usage of // displaced header, please update this code hash = test->hash(); assert (test->is_neutral(), "invariant") ; assert (hash != 0, "Trivial unexpected object/monitor header usage."); } } return hash;}
复制代码


通过如此复杂的步骤我们终于获取到哈希码值。


而我们在实际开发中,很多时候我们并不想打印对象的哈希码值


而是想获取该对象的具体属性,这个时候该怎么做呢?


我们已知直接打印对象时会自动调用toString方法


该方法是继承于 Object 类,所以为了能改变内容


很显然我们需要进行toString方法的重写,如下:


@Overridepublic String toString() {   return "Student{" +           "id=" + id +           ", name='" + name + '\'' +           ", age=" + age +           '}';}
复制代码


重写以后发现我们打印内容不再是哈希码值,而是替换成我们自己想要获取的属性值



用户头像

加百利

关注

还未添加个人签名 2021.06.08 加入

还未添加个人简介

评论

发布
暂无评论
JAVA对象直接输出的打印结果是什么?