写点什么

高精度 PP-YOLOE、轻量化 PP-PicoDet SOTA 模型重磅开源

作者:百度大脑
  • 2022 年 4 月 15 日
  • 本文字数:1379 字

    阅读完需:约 5 分钟

目标检测作为计算机视觉领域的顶梁柱,不仅可以独立完成车辆、商品、缺陷检测等任务,也是人脸识别、视频分析、以图搜图等复合技术的核心模块,在自动驾驶、工业视觉、安防交通等领域的商业价值有目共睹。

正因如此,YOLOv5、YOLOX、PP-YOLOE、PP-PicoDet 等优秀算法层出不穷,各有优劣侧重。而在当前云、边、端多场景协同的产业大趋势下,运行速度、模型计算量、模型格式转化、硬件适配、统一部署方案等实际问题都需要考虑,到底该怎么选呢?

今天小编就给大家推荐一个,针对云、边、端各环境都深层优化的超强目标检测开发套件——PaddleDetection。无论你追求的是高精度、轻量化,还是场景预训练模型,它其中的模型都能以业界高标准满足你的需求。同时,这些模型都拥有统一的使用方式及部署策略,不再需要进行模型转化、接口调整,更贴合工业大生产标准化、模块化的需求!

还在等什么!赶紧查看全部开源代码并 Star 收藏吧!!

下面,让我们来详细解读下这个开发套件中的模型,是如何达到业界高标准,又如何提供产业极佳实践体验的!

PP-YOLOE:

高精度 SOTA 目标检测模型

PP-YOLOE 根据不同应用场景设计了 s/m/l/x,4 个尺寸的模型来支持不同算力水平的硬件,无论是哪个尺寸,精度-速度的平衡都超越当前所有同等计算量下的 YOLO 模型!

  • 性能卓越:具体来说,PP-YOLOE-l 在 COCO test-dev 上以精度 51.4%,TRT FP16 推理速度 149FPS 的优异数据,相较 YOLOX,精度提升 1.3%,加速 25%;相较 YOLOv5,精度提升 0.7%,加速 26.8%。训练速度较 PP-YOLOv2 提高 33%,降低模型训练成本。

  • 部署友好:与此同时,PP-YOLOE 在结构设计上避免使用如 deformable convolution 或者 matrix nms 之类的特殊算子,使其能轻松适配更多硬件。当前已经完备支持 NVIDIA V100、T4 这样的云端 GPU 架构以及如 Jetson 系列等边缘端 GPU 和 FPGA 开发板。

PP-PicoDet:

0.7M 超超轻量 SOTA 目标检测模型

超乎想象的超小体积及超预期的性能,使 PP-PicoDet 成为边缘、低功耗硬件部署的极佳选择,而此次发布更是在原有基础上再次升级:

  • 更强性能:PP-PicoDet-S 参数量仅有 1.18M,却有 32.5%mAP 的精度,相较 YOLOX-Nano 高 6.7%,推理速度提升了 26%;相较 NanoDet-Plus,mAP 也高出了 2%,速度提升 30%。最新增加的 PP-PicoDet-XS 更是仅有 0.7M,在 CPU 上预测速度可达 250FPS 以上,在训练速度上也大幅提升一倍以上

  • 更好优化支持:考虑到端侧对计算量的优化追求是极致的,PP-PicoDet 在模型量化训练和稀疏化压缩方案支持方面做了更深度的打磨,仅需两步,即可实现在移动端部署加速 30%以上的效果。

  • 更友好部署:为了部署更加轻松高效, PP-PicoDet 在模型导出环节,将模型的后处理包含在了网络中,支持预测直接输出检测结果,无需额外开发后处理模块,还能端到端加速 10%-20%。

更多开源社区优秀算法

统一、极致的开发体验

PaddleDetection 还第一时间收录了如 YOLOv4、YOLOX 及 SwinTransformer 等在内的前沿优秀算法,与 Faster-RCNN、YOLOv3 等经典算法一同,为用户提供极致简单、统一的使用方式,且得益于飞桨原生推理库 Paddle Inference 及飞桨端侧推理框架 Paddle Lite 的能力,通过支持 TensorRT 和 OpenVino,开发者可以快速完成在服务端和边缘端 GPU 或 ARM CPU、NPU 等硬件上的高性能加速部署。此外,PaddleDetection 还支持一键导出为 ONNX 格式,顺畅对接 ONNX 生态。

以上所有模型、代码及使用文档、Demo 均在 PaddleDetection 中开源提供,从此无需再内卷,通用目标检测,这一个项目就够了!

用户头像

百度大脑

关注

用科技让复杂的世界更简单 2020.07.15 加入

百度大脑是百度技术多年积累和业务实践的集大成,包括视觉、语音、自然语言处理、知识图谱、深度学习等 AI 核心技术和 AI 开放平台。 即刻获取百度AI相关技术,可访问 ai.baidu.com了解更多!

评论

发布
暂无评论
高精度PP-YOLOE、轻量化PP-PicoDet SOTA模型重磅开源_百度大脑_InfoQ写作平台