详解图像处理的算术运算与逻辑运算
本文分享自华为云社区《[Python从零到壹] 三十六.图像处理基础篇之图像算术与逻辑运算详解》,作者: eastmount 。
一.图像加法运算
图像加法运算主要有两种方法。第一种是调用 Numpy 库实现,目标图像像素为两张图像的像素之和;第二种是通过 OpenCV 调用 add()函数实现。第二种方法的函数原型如下:
dst = add(src1, src2[, dst[, mask[, dtype]]])
– src1 表示第一张图像的像素矩阵
– src2 表示第二张图像的像素矩阵
– dst 表示输出的图像,必须和输入图像具有相同的大小和通道数
– mask 表示可选操作掩码(8 位单通道数组),用于指定要更改的输出数组的元素。
– dtype 表示输出数组的可选深度
注意,当两幅图像的像素值相加结果小于等于 255 时,则输出图像直接赋值该结果,如 120+48 赋值为 168;如果相加值大于 255,则输出图像的像素结果设置为 255,如(255+64) 赋值为 255。下面的代码实现了图像加法运算。
输出如图 4-1 所示,左边为“小珞珞”的原始图像,右边为像素值增加 100 像素后的图像,输出图像显示更偏白。
二.图像减法运算
图像减法运算主要调用 subtract()函数实现,其原型如下所示:
dst = subtract(src1, src2[, dst[, mask[, dtype]]])
– src1 表示第一张图像的像素矩阵
– src2 表示第二张图像的像素矩阵
– dst 表示输出的图像,必须和输入图像具有相同的大小和通道数
– mask 表示可选操作掩码(8 位单通道数组),用于指定要更改的输出数组的元素。
– dtype 表示输出数组的可选深度
具体实现代码如下所示:
输出如图 4-2 所示,左边为原始图像,右边为像素值减少 50 像素后的图像,输出图像显示更偏暗。
三.图像与运算
与运算是计算机中一种基本的逻辑运算方式,符号表示为“&”,其运算规则为:
0&0=0
0&1=0
1&0=0
1&1=1
图像的与运算是指两张图像(灰度图像或彩色图像均可)的每个像素值进行二进制“与”操作,实现图像裁剪。
dst = bitwise_and(src1, src2[, dst[, mask]])
– src1 表示第一张图像的像素矩阵
– src2 表示第二张图像的像素矩阵
– dst 表示输出的图像,必须和输入图像具有相同的大小和通道数
– mask 表示可选操作掩码(8 位单通道数组),用于指定要更改的输出数组的元素。
下面代码是通过图像与运算实现图像剪裁的功能。
输出如图 4-3 所示,原始图像与圆形进行与运算之后,提取了其中心轮廓。同时输出图像的形状为 377×326。注意,两张图像的大小和类型必须一致。
四.图像或运算
逻辑或运算是指如果一个操作数或多个操作数为 true,则逻辑或运算符返回布尔值 true;只有全部操作数为 false,结果才是 false。图像的或运算是指两张图像(灰度图像或彩色图像均可)的每个像素值进行二进制“或”操作,实现图像裁剪。其函数原型如下所示:
dst = bitwise_or(src1, src2[, dst[, mask]])
– src1 表示第一张图像的像素矩阵
– src2 表示第二张图像的像素矩阵
– dst 表示输出的图像,必须和输入图像具有相同的大小和通道数
– mask 表示可选操作掩码(8 位单通道数组),用于指定要更改的输出数组的元素。
下面代码是通过图像或运算实现图像剪裁的功能。
输出如图 4-4 所示,原始图像与圆形进行或运算之后,提取了图像除中心原形之外的像素值。
五.图像非运算
图像非运算就是图像的像素反色处理,它将原始图像的黑色像素点转换为白色像素点,白色像素点则转换为黑色像素点,其函数原型如下:
dst = bitwise_not(src1, src2[, dst[, mask]])
– src1 表示第一张图像的像素矩阵
– src2 表示第二张图像的像素矩阵
– dst 表示输出的图像,必须和输入图像具有相同的大小和通道数
– mask 表示可选操作掩码(8 位单通道数组),用于指定要更改的输出数组的元素。
图像非运算的实现代码如下所示。
原始图像非运算之后输出如图 4-5 所示。
六.图像异或运算
逻辑异或运算(xor)是一个数学运算符,数学符号为“⊕”,计算机符号为“xor”,其运算法则为:如果 a、b 两个值不相同,则异或结果为 1;如果 a、b 两个值相同,异或结果为 0。
图像的异或运算是指两张图像(灰度图像或彩色图像均可)的每个像素值进行二进制“异或”操作,实现图像裁剪。其函数原型如下所示:
dst = bitwise_xor(src1, src2[, dst[, mask]])
– src1 表示第一张图像的像素矩阵
– src2 表示第二张图像的像素矩阵
– dst 表示输出的图像,必须和输入图像具有相同的大小和通道数
– mask 表示可选操作掩码(8 位单通道数组),用于指定要更改的输出数组的元素。
图像异或运算的实现代码如下所示。
原始图像与圆形进行异或运算之后输出如图 4-6 所示。
七.总结
本文详细介绍了图像处理的算术运算与逻辑运算,包括图像加法、图像减法、图像与运算、图像或运算、图像非运算与图像异或运算,并以“小珞珞”图像为案例进行讲解,希望对您有所帮助。
版权声明: 本文为 InfoQ 作者【华为云开发者社区】的原创文章。
原文链接:【http://xie.infoq.cn/article/1ae0fc7d3a01b3c767df21192】。文章转载请联系作者。
评论