把这些基础算法题掌握好,基础不牢地动山摇,后面中级题很多都是在这些基础题的基础上的。
二叉树(DFS)
二叉树前中后遍历套路详解
前序遍历题目如下:root 节点是 A 节点(下图的 A 节点),然后让你按照下图数字的顺序依次打印出节点。
我们可以看到这其中的规律,就是深度优先遍历,先遍历左子树,再遍历右子树,这里我们不用递归,因为一些大厂严格要求二叉树遍历不用递归,递归太简单了。
重点思路就是:深度优先遍历,先遍历左子树,再遍历右子树,
所以,我们需要一套如何遍历一颗二叉树,并且是先左子树,再右子树的通用模板,如下
var Traversal = function(root) {
const stack = [];
while (root || stack.length){
while(root){
stack.push(root);
root = root.left;
}
root = stack.pop();
root = root.right;
}
return res;
};
复制代码
我们结合图片发现这个遍历产生的整体压栈的顺序是
A、B、D 入栈,
D 出栈
B 出栈
E 入栈
E 出栈
A 出栈
C 入栈
C 出栈
F 入栈
F 出栈
我们把上面入栈的元素按顺序排列一下就是,A、B、D、E、C、F,而这就是前序遍历的顺序!解答完毕!
是不是很有意思,下面的中序遍历,我们看看出栈顺序是不是中序遍历的要求:D、B、E、A、C、F(这就是中序遍历的要求,好了,两个题解决)
放具体前序遍历代码:
var preorderTraversal = function(root) {
// 初始化数据
const res =[];
const stack = [];
while (root || stack.length){
while(root){
res.push(root.val);
stack.push(root);
root = root.left;
}
root = stack.pop();
root = root.right;
}
return res;
};
复制代码
中序遍历是一个意思,在前序遍历的基础上改造一下
var preorderTraversal = function(root) {
// 初始化数据
const res =[];
const stack = [];
while (root || stack.length){
while(root){
stack.push(root);
root = root.left;
}
root = stack.pop();
res.push(root.val);
root = root.right;
}
return res;
};
复制代码
后序遍历有点不太一样,但是套路是一样的,我们需要先遍历右子树,再遍历左子树,反着来,就可以了,代码如下:
var postorderTraversal = function(root) {
// 初始化数据
const res =[];
const stack = [];
while (root || stack.length){
while(root){
stack.push(root);
res.unshift(root.val);
root = root.right;
}
root = stack.pop();
root = root.left;
}
return res;
};
复制代码
对称二叉树
这个题简而言之就是判断一个二叉树是对称的,比如说:二叉树 [1,2,2,3,4,4,3] 是对称的。
但是下面这个 [1,2,2,null,3,null,3] 则不是镜像对称的:
思路:递归解决:
判断两个指针当前节点值是否相等
判断 A 的右子树与 B 的左子树是否对称
判断 A 的左子树与 B 的右子树是否对称
function isSame(leftNode, rightNode){
if(leftNode === null && rightNode === null) return true;
if(leftNode === null || rightNode === null) return false;
return leftNode.val === rightNode.val && isSame(leftNode.left, rightNode.right) && isSame(leftNode.right, rightNode.left)
}
var isSymmetric = function(root) {
if(!root) return root;
return isSame(root.left, root.right);
};
复制代码
二叉树的最大深度
这个题在面试滴滴的时候遇到过,主要是掌握二叉树遍历的套路
var maxDepth = function(root) {
if(!root) return root;
let ret = 1;
function dfs(root, depth){
if(!root.left && !root.right) ret = Math.max(ret, depth);
if(root.left) dfs(root.left, depth+1);
if(root.right) dfs(root.right, depth+1);
}
dfs(root, ret);
return ret
};
复制代码
将有序数组转化为二叉搜索树
我们先看题:给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 高度平衡 二叉搜索树。高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树。示例 1:
输入:nums = [-10,-3,0,5,9]
输出:[0,-3,9,-10,null,5]
解释:[0,-10,5,null,-3,null,9] 也将被视为正确答案:
复制代码
示例 2:
输入:nums = [1,3]
输出:[3,1]
解释:[1,3] 和 [3,1] 都是高度平衡二叉搜索树。
提示:
1 <= nums.length <= 104
-104 <= nums[i] <= 104
nums 按 严格递增 顺序排列
复制代码
思路:
构建一颗树包括:构建 root、构建 root.left 和 root.right
题目要求"高度平衡" — 构建 root 时候,选择数组的中间元素作为 root 节点值,即可保持平衡。
递归函数可以传递数组,也可以传递指针,选择传递指针的时候:l r 分别代表参与构建 BST 的数组的首尾索引。
var sortedArrayToBST = function(nums) {
return toBST(nums, 0, nums.length - 1)
};
const toBST = function(nums, l, r){
if( l > r){
return null;
}
const mid = l + r >> 1;
const root = new TreeNode(nums[mid]);
root.left = toBST(nums, l, mid - 1);
root.right = toBST(nums, mid + 1, r);
return root;
}
复制代码
栈
栈是一种先进先出的数据结构,所以涉及到你需要先进先出这个想法后,就可以使用栈。
其次我觉得栈跟递归很相似,递归是不是先压栈,然后先进来的先出去,就跟函数调用栈一样。
有效的括号
这是一道很典型的用栈解决的问题, 给定一个只包括 '(',')','{','}','[',']' 的字符串 s ,判断字符串是否有效。
有效字符串需满足:左括号必须用相同类型的右括号闭合。左括号必须以正确的顺序闭合。
示例 1:
输入:s = "()"
输出:true
示例 2:
输入:s = "()[]{}"
输出:true
示例 3:
输入:s = "(]"
输出:false
示例 4:
输入:s = "([)]"
输出:false
复制代码
思路:这道题有一规律:1.右括号前面,必须是相对应的左括号,才能抵消!2.右括号前面,不是对应的左括号,那么该字符串,一定不是有效的括号!也就是说左括号我们直接放入栈中即可,发现是右括号就要对比是否跟栈顶元素相匹配,不匹配就返回 false
var isValid = function(s) {
const map = { '{': '}', '(': ')', '[': ']' };
const stack = [];
for(let i of s){
if(map[i]){
stack.push(i);
} else {
if(map[stack[stack.length - 1]] === i){
stack.pop()
}else{
return false;
}
}
}
return stack.length === 0;
};
复制代码
最小栈
先看题目:设计一个支持 push ,pop ,top 操作,并能在常数时间内检索到最小元素的栈。
push(x) —— 将元素 x 推入栈中。
pop() —— 删除栈顶的元素。
top() —— 获取栈顶元素。
getMin() —— 检索栈中的最小元素。
示例:
MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.getMin(); --> 返回 -3.
minStack.pop();
minStack.top(); --> 返回 0.
minStack.getMin(); --> 返回 -2.
提示:
pop、top 和 getMin 操作总是在 非空栈 上调用。
复制代码
我们先不写 getMin 方法,满足其他方法实现就非常简单,我们来看一下:
var MinStack = function() {
this.stack = [];
};
MinStack.prototype.push = function(x) {
this.stack.push(x);
};
MinStack.prototype.pop = function() {
this.stack.pop();
};
MinStack.prototype.top = function() {
return this.stack[this.stack.length - 1];
};
复制代码
如何保证每次取最小呢,我们举一个例子:
如上图,我们需要一个辅助栈来记录最小值,
开始我们向 stack push -2
此时辅助栈 minStack,因为此时 stack 最小的是-2,也 push -2stack push 0
此时辅助站 minStack 会用 0 跟 -2 对比,-2 更小,minstack 会 push -2
stack push -3
此时辅助站 minStack 会用 -3 跟 -2 对比,-3 更小,minstack 会 push -3
所以我们取最小的时候,总能在 minStack 中取到最小值,所以解法就出来了:
var MinStack = function() {
this.stack = [];
// 辅助栈
this.minStack = [];
};
MinStack.prototype.push = function(x) {
this.stack.push(x);
// 如果是第一次或者当前x比最小栈里的最小值还小才push x
if(this.minStack.length === 0 || x < this.minStack[this.minStack.length - 1]){
this.minStack.push(x)
} else {
this.minStack.push( this.minStack[this.minStack.length - 1])
}
};
MinStack.prototype.pop = function() {
this.stack.pop();
this.minStack.pop();
};
MinStack.prototype.top = function() {
return this.stack[this.stack.length - 1];
};
MinStack.prototype.getMin = function() {
return this.minStack[this.stack.length - 1];
};
复制代码
动态规划
动态规划,一定要知道动态转移方程,有了这个,就相当于解题的钥匙,我们从题目中体会一下
最大子序和
题目如下:给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例 1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
示例 2:
输入:nums = [1]
输出:1
示例 3:
输入:nums = [0]
输出:0
复制代码
思路:
确定转义方程的公示:
dp[i]只有两个方向可以推出来:
1、如果 dp[i - 1] < 0,也就是当前遍历到 nums 的 i,之前的最大子序和是负数,那么我们就没必要继续加它了,因为 dp[i] = dp[i - 1] + nums[i] 会比 nums[i]更小,所以此时还不如 dp[i] = nums[i],就是目前遍历到 i 的最大子序和呢
2、同理 dp[i - 1] > 0,说明 nums[i]值得去加 dp[i - 1],此时回避 nums[i]更大
这样代码就出来了,其实更多的就是求 dp,遍历 nums 每一个下标都会产生最大子序和,我们记录下来即可
var maxSubArray = function(nums) {
let res = nums[0];
const dp = [nums[0]];
for(let i=1;i < nums.length;i++){
if(dp[i-1]>0){
dp[i]=nums[i]+dp[i-1]
}else{
dp[i]=nums[i]
}
res=Math.max(dp[i],res)
}
return res
};
复制代码
爬楼梯
先看题目:假设你正在爬楼梯。需要 n 阶你才能到达楼顶。每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?注意:给定 n 是一个正整数。
示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
示例 2:
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶
复制代码
涉及到动态规划,一定要知道动态转移方程,有了这个,就相当于解题的钥匙,
这道题我们假设 dp[10]表示爬到是你爬到 10 阶就到达楼顶的方法数,
那么,dp[10] 是不是就是你爬到 8 阶,然后再走 2 步就到了,还有你走到 9 阶,再走 1 步就到了,
所以 dp[10] 是不是等于 dp[9]+dp[8]
延伸一下 dp[n] 是不是等于 dp[n - 1] + dp[n - 2]
代码如下:
var climbStairs = function(n) {
const dp = {};
dp[1] = 1;
dp[2] = 2;
for(let i = 3; i <= n; i++){
dp[i] = dp[i-1] + dp[i-2]
}
return dp[n]
};
复制代码
为有个良好的阅读感,内容较多的分为了上下,力扣题(下)会尽快发出来,小伙伴们先吸收学习上部分哦。
如果看了觉得有帮助的,我是前端依依,欢迎 点赞 关注 评论
前端学习、面试有疑惑或需要学习资料的可以添加我个人微信,备注“焖豆”,咱们可以聊聊,用我的前端经验帮助到你~
评论