写点什么

怎么排查是哪里出现了数据倾斜

作者:编程江湖
  • 2021 年 12 月 09 日
  • 本文字数:1121 字

    阅读完需:约 4 分钟

Hive 数据倾斜怎么发现,怎么定位,怎么解决

多数介绍数据倾斜的文章都是以大篇幅的理论为主,并没有给出具体的数据倾斜案例。当工作中遇到了倾斜问题,这些理论很难直接应用,导致我们面对倾斜时还是不知所措。

今天我们不扯大篇理论,直接以例子来实践,排查是否出现了数据倾斜,具体是哪段代码导致的倾斜,怎么解决这段代码的倾斜。

当执行过程中任务卡在 99%,大概率是出现了数据倾斜,但是通常我们的 SQL 很大,需要判断出是哪段代码导致的倾斜,才能利于我们解决倾斜。

倾斜问题排查

数据倾斜大多数都是大 key 问题导致的。

如何判断是大 key 导致的问题,可以通过下面方法:

1.通过时间判断

如果某个 reduce 的时间比其他 reduce 时间长的多,如下图,大部分 task 在 1 分钟之内完成,只有 r_000000 这个 task 执行 20 多分钟了还没完成。


注意:要排除两种情况:

如果每个 reduce 执行时间差不多,都特别长,不一定是数据倾斜导致的,可能是 reduce 设置过少导致的。

有时候,某个 task 执行的节点可能有问题,导致任务跑的特别慢。这个时候,mapreduce 的推测执行,会重启一个任务。如果新的任务在很短时间内能完成,大数据培训通常则是由于 task 执行节点问题导致的个别 task 慢。但是如果推测执行后的 task 执行任务也特别慢,那更说明该 task 可能会有倾斜问题。

2.通过任务 Counter 判断

Counter 会记录整个 job 以及每个 task 的统计信息。counter 的 url 一般类似:

http://bd001:8088/proxy/application_1624419433039_1569885/mapreduce/singletaskcounter/task_1624419433039_1569885_r_000000/org.apache.hadoop.mapreduce.FileSystemCounter

通过输入记录数,普通的 task counter 如下,输入的记录数是 13 亿多:



而 task=000000 的 counter 如下,其输入记录数是 230 多亿。是其他任务的 100 多倍:


4.定位 SQL 代码 1.确定任务卡住的 stage 通过 jobname 确定 stage:一般 Hive 默认的 jobname 名称会带上 stage 阶段,如下通过 jobname 看到任务卡住的为 Stage-4:


如果 jobname 是自定义的,那可能没法通过 jobname 判断 stage。需要借助于任务日志:

找到执行特别慢的那个 task,然后 Ctrl+F 搜索 “CommonJoinOperator: JOIN struct” 。Hive 在 join 的时候,会把 join 的 key 打印到日志中。如下:


上图中的关键信息是:struct<_col0:string, _col1:string, _col3:string>

这时候,需要参考该 SQL 的执行计划。通过参考执行计划,可以断定该阶段为 Stage-4 阶段:


2.确定 SQL 执行代码

确定了执行阶段,即 stage。通过执行计划,则可以判断出是执行哪段代码时出现了倾斜。还是从此图,这个 stage 中进行连接操作的表别名是 d:

就可以推测出是在执行下面红框中代码时出现了数据倾斜,因为这行的表的别名是 d:


用户头像

编程江湖

关注

IT技术分享 2021.11.23 加入

还未添加个人简介

评论

发布
暂无评论
怎么排查是哪里出现了数据倾斜