块存储
0 人感兴趣 · 4 次引用
- 最新
- 推荐
大规模块存储 EC 系统构建
百度沧海的块存储采用了 2 层 append 方案,规避了 EC 的修改代价。通过大小写分离情况,解决了小写不适合 EC 的情况。同时选择了合适 pick 算法、数据分流、合适的 compaction 点的方式,优化了系统的写放大,能够达到低成本下较高的系统性能。


0 人感兴趣 · 4 次引用
百度沧海的块存储采用了 2 层 append 方案,规避了 EC 的修改代价。通过大小写分离情况,解决了小写不适合 EC 的情况。同时选择了合适 pick 算法、数据分流、合适的 compaction 点的方式,优化了系统的写放大,能够达到低成本下较高的系统性能。