模型压缩
0 人感兴趣 · 4 次引用
- 最新
- 推荐

深度学习实践篇 [17]:模型压缩技术、模型蒸馏算法:Patient-KD、DistilBERT、DynaBERT、TinyBERT
理论上来说,深度神经网络模型越深,非线性程度也就越大,相应的对现实问题的表达能力越强,但相应的代价是,训练成本和模型大小的增加。同时,在部署时,大模型预测速度较低且需要更好的硬件支持。但随着深度学习越来越多的参与到产业中,很多情况下,需要将

0 人感兴趣 · 4 次引用
理论上来说,深度神经网络模型越深,非线性程度也就越大,相应的对现实问题的表达能力越强,但相应的代价是,训练成本和模型大小的增加。同时,在部署时,大模型预测速度较低且需要更好的硬件支持。但随着深度学习越来越多的参与到产业中,很多情况下,需要将