基于知识图谱的《红楼梦》人物关系可视化及问答系统(含码源):命名实体识别、关系识别、LTP 简单教学
文件树:
app.py 是整个系统的主入口
templates 文件夹是 HTML 的页面
|-index.html 欢迎界面
|-search.html 搜索人物关系页面
|-all_relation.html 所有人物关系页面
|-KGQA.html 人物关系问答页面
static 文件夹存放 css 和 js,是页面的样式和效果的文件
raw_data 文件夹是存在数据处理后的三元组文件
neo_db 文件夹是知识图谱构建模块
|-config.py 配置参数
|-create_graph.py 创建知识图谱,图数据库的建立
|-query_graph.py 知识图谱的查询
KGQA 文件夹是问答系统模块
|-ltp.py 分词、词性标注、命名实体识别
spider 文件夹是爬虫模块
|- get_*.py 是之前爬取人物资料的代码,已经产生好 images 和 json 可以不用再执行
|-show_profile.py 是调用人物资料和图谱展示在前端的代码
部署步骤:
0.安装所需的库 执行 pip install -r requirement.txt
1.先下载好 neo4j 图数据库,并配好环境(注意 neo4j 需要 jdk8)。修改 neo_db 目录下的配置文件 config.py,设置图数据库的账号和密码。
2.切换到 neo_db 目录下,执行 python create_graph.py 建立知识图谱
3.去 这里 下载好 ltp 模型。ltp简介
4.在 KGQA 目录下,修改 ltp.py 里的 ltp 模型文件的存放目录
5.运行 python app.py,浏览器打开 localhost:5000 即可查看
1.系统整体流程图:
项目码源见文章顶部或文末
项目码源点击跳转
2.主界面-基于知识图谱的《红楼梦》人物关系可视化及问答系统
网站示例:
欢迎界面
3.KGQA 部分码源展示
#-*- coding: utf-8 -*-
import pyltp
import os
LTP_DATA_DIR = '/Users/chizhu/data/ltp_data_v3.4.0' # ltp模型目录的路径
def cut_words(words):
segmentor = pyltp.Segmentor()
seg_model_path = os.path.join(LTP_DATA_DIR, 'cws.model')
segmentor.load(seg_model_path)
words = segmentor.segment(words)
array_str="|".join(words)
array=array_str.split("|")
segmentor.release()
return array
def words_mark(array):
# 词性标注模型路径,模型名称为`pos.model`
pos_model_path = os.path.join(LTP_DATA_DIR, 'pos.model')
postagger = pyltp.Postagger() # 初始化实例
postagger.load(pos_model_path) # 加载模型
postags = postagger.postag(array) # 词性标注
pos_str=' '.join(postags)
pos_array=pos_str.split(" ")
postagger.release() # 释放模型
return pos_array
def get_target_array(words):
target_pos=['nh','n']
target_array=[]
seg_array=cut_words(words)
pos_array = words_mark(seg_array)
for i in range(len(pos_array)):
if pos_array[i] in target_pos:
target_array.append(seg_array[i])
target_array.append(seg_array[1])
return target_array
复制代码
4.LTP 简单教学
pyltp 是 LTP 的 Python 封装,提供了分词,词性标注,命名实体识别,依存句法分析,语义角色标注的功能。
关于各个模块任务的介绍、标注体系、性能指标,可以查阅 这里 的介绍。
pyltp 的所有输入的分析文本和输出的结果的编码均为 UTF-8。
如果您以非 UTF-8 编码的文本输入进行分析,结果可能为空。请注意源代码文件的默认编码。
由于 Windows 终端采用 GBK 编码显示,直接输出 pyltp 的分析结果会在终端显示为乱码。您可以将标准输出重定向到文件,以 UTF8 方式查看文件,就可以解决显示乱码的问题。
4.1 分句
使用 pyltp 进行分句示例如下
#-*- coding: utf-8 -*-
from pyltp import SentenceSplitter
sents = SentenceSplitter.split('元芳你怎么看?我就趴窗口上看呗!') # 分句
print '\n'.join(sents)
复制代码
结果如下
4.2 分词
#-*- coding: utf-8 -*-
import os
LTP_DATA_DIR = '/path/to/your/ltp_data' # ltp模型目录的路径
cws_model_path = os.path.join(LTP_DATA_DIR, 'cws.model') # 分词模型路径,模型名称为`cws.model`
from pyltp import Segmentor
segmentor = Segmentor() # 初始化实例
segmentor.load(cws_model_path) # 加载模型
words = segmentor.segment('元芳你怎么看') # 分词
print '\t'.join(words)
segmentor.release() # 释放模型
复制代码
结果如下
words = segmentor.segment('元芳你怎么看')
的返回值类型是 native 的 VectorOfString 类型,可以使用 list 转换成 Python 的列表类型,例如
...
>>> words = segmentor.segment('元芳你怎么看')
>>> type(words)
<class 'pyltp.VectorOfString'>
>>> words_list = list(words)
>>> type(words_list)
<type 'list'>
>>> print words_list
['\xe5\xae\xa2\xe6\x9c\x8d', '\xe5\xa4\xaa', '\xe7\xb3\x9f\xe7\xb3\x95', '\xe4\xba\x86']
复制代码
4.2.1 使用分词外部词典
pyltp 分词支持用户使用自定义词典。分词外部词典本身是一个文本文件(plain text),每行指定一个词,编码同样须为 UTF-8,样例如下所示
示例如下
#-*- coding: utf-8 -*-
import os
LTP_DATA_DIR = '/path/to/your/ltp_data' # ltp模型目录的路径
cws_model_path = os.path.join(LTP_DATA_DIR, 'cws.model') # 分词模型路径,模型名称为`cws.model`
from pyltp import Segmentor
segmentor = Segmentor() # 初始化实例
segmentor.load_with_lexicon(cws_model_path, '/path/to/your/lexicon') # 加载模型,第二个参数是您的外部词典文件路径
words = segmentor.segment('亚硝酸盐是一种化学物质')
print '\t'.join(words)
segmentor.release()
复制代码
4.2.2 使用个性化分词模型
个性化分词是 LTP 的特色功能。个性化分词为了解决测试数据切换到如小说、财经等不同于新闻领域的领域。 在切换到新领域时,用户只需要标注少量数据。 个性化分词会在原有新闻数据基础之上进行增量训练。 从而达到即利用新闻领域的丰富数据,又兼顾目标领域特殊性的目的。
pyltp 支持使用用户训练好的个性化模型。关于个性化模型的训练需使用 LTP,详细介绍和训练方法请参考 个性化分词 。
在 pyltp 中使用个性化分词模型的示例如下
#*- coding: utf-8 -*-
import os
LTP_DATA_DIR = '/path/to/your/ltp_data' # ltp模型目录的路径
cws_model_path = os.path.join(LTP_DATA_DIR, 'cws.model') # 分词模型路径,模型名称为`cws.model`
from pyltp import CustomizedSegmentor
customized_segmentor = CustomizedSegmentor() # 初始化实例
customized_segmentor.load(cws_model_path, '/path/to/your/customized_model') # 加载模型,第二个参数是您的增量模型路径
words = customized_segmentor.segment('亚硝酸盐是一种化学物质')
print '\t'.join(words)
customized_segmentor.release()
复制代码
同样,使用个性化分词模型的同时也可以使用外部词典
#-*- coding: utf-8 -*-
import os
LTP_DATA_DIR = '/path/to/your/ltp_data' # ltp模型目录的路径
cws_model_path = os.path.join(LTP_DATA_DIR, 'cws.model') # 分词模型路径,模型名称为`cws.model`
from pyltp import CustomizedSegmentor
customized_segmentor = CustomizedSegmentor() # 初始化实例
customized_segmentor.load_with_lexicon(cws_model_path, '/path/to/your/customized_model', '/path/to/your/lexicon') # 加载模型
words = customized_segmentor.segment('亚硝酸盐是一种化学物质')
print '\t'.join(words)
customized_segmentor.release()
复制代码
4.3 词性标注
使用 pyltp 进行词性标注示例如下
#-*- coding: utf-8 -*-
import os
LTP_DATA_DIR = '/path/to/your/ltp_data' # ltp模型目录的路径
pos_model_path = os.path.join(LTP_DATA_DIR, 'pos.model') # 词性标注模型路径,模型名称为`pos.model`
from pyltp import Postagger
postagger = Postagger() # 初始化实例
postagger.load(pos_model_path) # 加载模型
words = ['元芳', '你', '怎么', '看'] # 分词结果
postags = postagger.postag(words) # 词性标注
print '\t'.join(postags)
postagger.release() # 释放模型
复制代码
结果如下
参数 words
是分词模块的返回值,也支持 Python 原生的 list 类型,例如
words = ['元芳', '你', '怎么', '看']
postags = postagger.postag(words)
复制代码
LTP 使用 863 词性标注集,详细请参考 词性标注集 。
pyltp 词性标注同样支持用户的外部词典。词性标注外部词典同样为一个文本文件,每行指定一个词,第一列指定单词,第二列之后指定该词的候选词性(可以有多项,每一项占一列),列与列之间用空格区分。示例如下
##命名实体识别
使用 pyltp 进行命名实体识别示例如下
#-*- coding: utf-8 -*-
import os
LTP_DATA_DIR = '/path/to/your/ltp_data' # ltp模型目录的路径
ner_model_path = os.path.join(LTP_DATA_DIR, 'ner.model') # 命名实体识别模型路径,模型名称为`pos.model`
from pyltp import NamedEntityRecognizer
recognizer = NamedEntityRecognizer() # 初始化实例
recognizer.load(ner_model_path) # 加载模型
words = ['元芳', '你', '怎么', '看']
postags = ['nh', 'r', 'r', 'v']
netags = recognizer.recognize(words, postags) # 命名实体识别
print '\t'.join(netags)
recognizer.release() # 释放模型
复制代码
其中,words
和 postags
分别为分词和词性标注的结果。同样支持 Python 原生的 list 类型。
结果如下
LTP 采用 BIESO 标注体系。B 表示实体开始词,I 表示实体中间词,E 表示实体结束词,S 表示单独成实体,O 表示不构成命名实体。
LTP 提供的命名实体类型为: 人名(Nh)、地名(Ns)、机构名(Ni)。
B、I、E、S 位置标签和实体类型标签之间用一个横线 -
相连;O 标签后没有类型标签。
详细标注请参考 命名实体识别标注集 。
4.4 依存句法分析
使用 pyltp 进行依存句法分析示例如下
#-*- coding: utf-8 -*-
import os
LTP_DATA_DIR = '/path/to/your/ltp_data' # ltp模型目录的路径
par_model_path = os.path.join(LTP_DATA_DIR, 'parser.model') # 依存句法分析模型路径,模型名称为`parser.model`
from pyltp import Parser
parser = Parser() # 初始化实例
parser.load(par_model_path) # 加载模型
words = ['元芳', '你', '怎么', '看']
postags = ['nh', 'r', 'r', 'v']
arcs = parser.parse(words, postags) # 句法分析
print "\t".join("%d:%s" % (arc.head, arc.relation) for arc in arcs)
parser.release() # 释放模型
复制代码
其中,words
和 postags
分别为分词和词性标注的结果。同样支持 Python 原生的 list 类型。
结果如下
arc.head
表示依存弧的父节点词的索引。ROOT 节点的索引是 0,第一个词开始的索引依次为 1、2、3…
arc.relation
表示依存弧的关系。
arc.head
表示依存弧的父节点词的索引,arc.relation
表示依存弧的关系。
标注集请参考 依存句法关系 。
4.5 语义角色标注
使用 pyltp 进行语义角色标注示例如下
#-*- coding: utf-8 -*-
import os
LTP_DATA_DIR = '/path/to/your/ltp_data' # ltp模型目录的路径
srl_model_path = os.path.join(LTP_DATA_DIR, 'srl') # 语义角色标注模型目录路径,模型目录为`srl`。注意该模型路径是一个目录,而不是一个文件。
from pyltp import SementicRoleLabeller
labeller = SementicRoleLabeller() # 初始化实例
labeller.load(srl_model_path) # 加载模型
words = ['元芳', '你', '怎么', '看']
postags = ['nh', 'r', 'r', 'v']
#arcs 使用依存句法分析的结果
roles = labeller.label(words, postags, arcs) # 语义角色标注
#打印结果
for role in roles:
print role.index, "".join(
["%s:(%d,%d)" % (arg.name, arg.range.start, arg.range.end) for arg in role.arguments])
labeller.release() # 释放模型
复制代码
结果如下
3 A0:(0,0)A0:(1,1)ADV:(2,2)
复制代码
第一个词开始的索引依次为 0、1、2…
返回结果 roles
是关于多个谓词的语义角色分析的结果。由于一句话中可能不含有语义角色,所以结果可能为空。
role.index
代表谓词的索引, role.arguments
代表关于该谓词的若干语义角色。
arg.name
表示语义角色类型,arg.range.start
表示该语义角色起始词位置的索引,arg.range.end
表示该语义角色结束词位置的索引。
例如上面的例子,由于结果输出一行,所以 “元芳你怎么看” 有一组语义角色。 其谓词索引为 3,即 “看”。这个谓词有三个语义角色,范围分别是(0,0) 即“元芳”,(1,1)即 “你”,(2,2) 即“怎么”,类型分别是 A0、A0、ADV。
arg.name
表示语义角色关系,arg.range.start
表示起始词位置,arg.range.end
表示结束位置。
更多优质内容请关注公号 &知乎:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。
项目码源见文章顶部或文末
项目码源点击跳转
评论