Elasticsearch 之 join 关联查询及使用场景 | 京东云技术团队
在 Elasticsearch 这样的分布式系统中执行类似 SQL 的 join 连接是代价是比较大的,然而,Elasticsearch 却给我们提供了基于水平扩展的两种连接形式 。这句话摘自 Elasticsearch 官网,从“然而”来看,说明某些场景某些情况下我们还是可以使用的
一、join 总述
1、关系类比
在关系型数据库中,以 MySQL 为例,尤其 B 端类系统且数据量不是特别大的场景,我们经常用到 join 关键字对有关系的两张或者多张表进行关联查询。但是当数据量达到一定量级时,查询性能就是经常困扰的问题。由于 es 可以做到数亿量级的秒查(具体由分片数量决定),这时候把数据同步到 es 是我们可以使用解决方案之一。
那么不禁有疑问问了,由于业务场景的决定,之前必须关联查询的两张表还能做到进行关联吗?
答案是可以的,es 也提供了类似于关系型数据库的关联查询,但是它又与关系型数据的关联查询有明显的区别与限制。
2、使用场景
如果把关系数据库原有关联的两张表,同步到 es 后,通常情况下,我们业务开发中会有两种查询诉求的场景
场景 1
诉求:展示子表维度的明细数据(包含父表和子表中字段的条件)
方案:对于此种查询诉求,我们可以把原来关联的父子表打成父子表字段混合在一起的大宽表,既能满足查询条件,又有查询性能的保障,也是常用存储方案之一
场景 2
诉求:展示父表维度的明细数据(包含父表和子表中字段的条件)
方案:然而,对于此种查询诉求,需要通过子表的条件来查询出父表的明细结果,场景 1 的宽表存储方案是子表明细数据,而最终我们要的是父表明细数据,显然对于场景 1 的存储方案是不能满足的。如果非要使用场景 1 的存储方案,我们还要对宽表结果进行一次 groupby 或者 collapse 操作来得到父表结果。
这个时候我们就可以使用 es 提供的 join 功能来完成场景 2 的诉求查询,同时它也满足场景 1 的诉求查询
3、使用限制
由于 es 属于分布式文档型数据库,数据自然是存在于多个分片之上的。Join 字段自然不能像关系型数据库中的 join 使用。在 es 中为了保证良好的查询性能,最佳的实践是将数据模型设置为非规范化文档,通过字段冗余构造宽表,即存储在一个索引中。需要满足条件如下:
(1)父子文档(数据)必须存储在同一 index 中
(2)父子文档(数据)必须存储在同一个分片中,通过关联父文档 ID 关联
(3)一个 index 中只能包含一个 join 字段,但是可以有多个关系
(4)同一个 index 中,一个父关系可以对应多个子关系,一个子关系只对应一个父关系
4、性能问题
当然执行了 join 查询固然性能会受到一定程度的影响。对于带 has_child/has_parent 而言,其查询性能会随着指向唯一父文档的匹配子文档的数量增加而降低。本文开篇第一句摘自 es 官网描述,从 ES 官方的描述来看 join 关联查询对性能的损耗是比较大的。
不过,在笔者使用的过程中,在 5 个分片的前提下,且父表十万量级,子表数据量在千万量级的情况下,关联查询的耗时还是在 100ms 内完成的,对于 B 端许多场景还是可以接受的。
若有类似场景,建议我们在使用前,根据分片的多少和预估未来数据量的大小提前做好性能测试,防止以后数量达到一定程度时,性能有明显下降,那个时候再改存储方案得不偿失。
二、Mapping
1、举例说明
这里以优惠券活动与优惠券明细为例,在一个优惠券活动中可以发放几千万的优惠券,所以券活动与券明细是一对多的关系。
券活动表字段
券明细表字段
2、mapping 释义
join 类型的字段主要用来在同一个索引中构建父子关联关系。通过 relations 定义一组父子关系,每个关系都包含一个父级关系名称和一个或多个子级关系名称
activity_coupon_field 是一个关联字段,内部定义了一组 join 关系,该字段为自命名
type 指定关联关系是 join,固定写法
relations 定义父子关系,activity 父类型名称,coupon 子类型名称,名称均为自命名
三、插入数据
1、插入父文档
在 put 父文档数据的时候,我们通常按照某种规则指定文档 ID,方便子文档数据变更时易于得到父文档 ID。比如这里我们用 activity_id 的值:activity_100 来作为父 id
2、插入子文档
上边已经指定了父文档 ID,而子表中已经包含有 activity_id,所以很容易得到父文档 ID
put 子文档数据时候,必须指定父文档 ID,就是父文档中的_id,这样父子数据才建立了关联关系。与此同时还要指定 routing 字段为父文档 ID,这样保证了父子数据在同一分片上。
四、关联查询
1、has_parent 查询(父查子)
根据父文档条件字段查询符合条件的子文档数据
例如:查询包含“年货节”活动字样,且已经被领取过的券
2、has_child 查询(子查父)
根据子文档条件字段符合条件的父文档数据
例如:查询 coupon_id=12345678 在那个存在于哪个券活动中
参考:Joining queries | Elasticsearch Guide [7.9] | Elastic
以上文中如有不正之处欢迎留言指正
作者:京东零售 李振乾
内容来源:京东云开发者社区
版权声明: 本文为 InfoQ 作者【京东科技开发者】的原创文章。
原文链接:【http://xie.infoq.cn/article/5ad12a93f134896d942b291d1】。文章转载请联系作者。
评论