写点什么

手把手教学小型金融知识图谱构建:量化分析、图数据库 neo4j、图算法、关系预测、命名实体识别、Cypher Cheetsheet 详细教学等

  • 2023-07-08
    浙江
  • 本文字数:9474 字

    阅读完需:约 31 分钟

手把手教学小型金融知识图谱构建:量化分析、图数据库neo4j、图算法、关系预测、命名实体识别、Cypher Cheetsheet详细教学等

手把手教学小型金融知识图谱构建:量化分析、图数据库 neo4j、图算法、关系预测、命名实体识别、Cypher Cheetsheet 详细教学等

效果预览:




1. 知识图谱存储方式

知识图谱存储方式主要包含资源描述框架(Resource Description Framework,RDF)和图数据库(Graph Database)。

1.1 资源描述框架特性

  • 存储为三元组(Triple)

  • 标准的推理引擎

  • W3C标准

  • 易于发布数据

  • 多数为学术界场景

1.2 图数据库特性

  • 节点和关系均可以包含属性

  • 没有标准的推理引擎

  • 图的遍历效率高

  • 事务管理

  • 多数为工业界场景



码源链接见文末跳转

文末链接跳转

2. 图数据库 neo4j

neo4j 是一款NoSQL图数据库,具备高性能的读写可扩展性,基于高效的图形查询语言Cypher,更多介绍可访问neo4j官网,官网还提供了Online Sandbox实现快速上手体验。

2.1 软件下载

下载链接:https://neo4j.com/download-center/

2.2 启动登录

2.2.1 Windows

  • 进入neo4j目录


cd neo4j/bin./neo4j start
复制代码


  • 启动成功,终端出现如下提示即为启动成功


Starting Neo4j.Started neo4j (pid 30914). It is available at http://localhost:7474/ There may be a short delay until the server is ready.
复制代码


(1)访问页面:http://localhost:7474


(2)初始账户和密码均为neo4jhost类型选择bolt


(3)输入旧密码并输入新密码:启动前注意本地已安装jdk(建议安装jdk version 11):https://www.oracle.com/java/technologies/javase-downloads.html

2.2.2 MacOS

执行 Add Local DBMS 后,再打开 Neo4j Browser 即可

2.3 储备知识

在 neo4j 上执行 CRUD 时需要使用 Cypher 查询语言。


2.4 Windows 安装时可能遇到问题及解决方法

  • 问题:完成安装 JDK1.8.0_261 后,在启动neo4j过程中出现了以下问题:


Unable to find any JVMs matching version "11"
复制代码


  • 解决方案:提示安装jdk 11 version,于是下载了jdk-11.0.8Mac OS可通过ls -la /Library/Java/JavaVirtualMachines/查看已安装的jdk及版本信息。



3. 知识图谱数据准备

3.1 免费开源金融数据接口

Tushare 免费账号可能无法拉取数据,可参考 issues 提供的股票数据获取方法:

3.1.1 Tushare

官网链接:http://www.tushare.org/

3.1.2 JointQuant

官网链接:https://www.joinquant.com/


3.1.3 导入模块

import tushare as ts  # 参考Tushare官网提供的安装方式import csvimport timeimport pandas as pd# 以下pro_api token可能已过期,可自行前往申请或者使用免费版本pro = ts.pro_api('4340a981b3102106757287c11833fc14e310c4bacf8275f067c9b82d')
复制代码

3.2 数据预处理

3.2.1 股票基本信息

stock_basic = pro.stock_basic(list_status='L', fields='ts_code, symbol, name, industry')# 重命名行,便于后面导入neo4jbasic_rename = {'ts_code': 'TS代码', 'symbol': '股票代码', 'name': '股票名称', 'industry': '行业'}stock_basic.rename(columns=basic_rename, inplace=True)# 保存为stock_basic.csvstock_basic.to_csv('financial_data\\stock_basic.csv', encoding='gbk')
复制代码


3.2.2 股票持有股东信息

holders = pd.DataFrame(columns=('ts_code', 'ann_date', 'end_date', 'holder_name', 'hold_amount', 'hold_ratio'))# 获取一年内所有上市股票股东信息(可以获取一个报告期的)for i in range(3610):   code = stock_basic['TS代码'].values[i]   holders = pro.top10_holders(ts_code=code, start_date='20180101', end_date='20181231')   holders = holders.append(holders)   if i % 600 == 0:       print(i)   time.sleep(0.4)# 数据接口限制# 保存为stock_holders.csvholders.to_csv('financial_data\\stock_holders.csv', encoding='gbk')holders = pro.holders(ts_code='000001.SZ', start_date='20180101', end_date='20181231')
复制代码


3.2.3 股票概念信息

concept_details = pd.DataFrame(columns=('id', 'concept_name', 'ts_code', 'name'))for i in range(358):   id = 'TS' + str(i)   concept_detail = pro.concept_detail(id=id)   concept_details = concept_details.append(concept_detail)   time.sleep(0.4)# 保存为concept_detail.csvconcept_details.to_csv('financial_data\\stock_concept.csv', encoding='gbk')
复制代码


3.2.4 股票公告信息

for i in range(3610):   code = stock_basic['TS代码'].values[i]   notices = pro.anns(ts_code=code, start_date='20180101', end_date='20181231', year='2018')   notices.to_csv("financial_data\\notices\\"+str(code)+".csv",encoding='utf_8_sig',index=False)notices = pro.anns(ts_code='000001.SZ', start_date='20180101', end_date='20181231', year='2018')
复制代码


3.2.5 财经新闻信息

news = pro.news(src='sina', start_date='20180101', end_date='20181231')news.to_csv("financial_data\\news.csv",encoding='utf_8_sig')
复制代码


3.2.6 概念信息

concept = pro.concept()concept.to_csv('financial_data\\concept.csv', encoding='gbk')
复制代码


3.2.7 沪股通和深股通成分信息

#获取沪股通成分sh = pro.hs_const(hs_type='SH')sh.to_csv("financial_data\\sh.csv",index=False)#获取深股通成分sz = pro.hs_const(hs_type='SZ')sz.to_csv("financial_data\\sz.csv",index=False)
复制代码


3.2.8 股票价格信息

for i in range(3610):   code = stock_basic['TS代码'].values[i]   price = pro.query('daily', ts_code=code, start_date='20180101', end_date='20181231')   price.to_csv("financial_data\\price\\"+str(code)+".csv",index=False)
复制代码


3.2.9 使用免费接口获取股票数据

import tushare as ts# 基本面信息df = ts.get_stock_basics()# 公告信息ts.get_notices("000001")# 新浪股吧ts.guba_sina()# 历史价格数据ts.get_hist_data("000001")# 历史价格数据(周粒度)ts.get_hist_data("000001",ktype="w")# 历史价格数据(1分钟粒度)ts.get_hist_data("000001",ktype="m")# 历史价格数据(5分钟粒度)ts.get_hist_data("000001",ktype="5")# 指数数据(sh上证指数;sz深圳成指;hs300沪深300;sz50上证50;zxb中小板指数;cyb创业板指数)ts.get_hist_data("cyb")# 宏观数据(居民消费指数)ts.get_cpi()# 获取分笔数据ts.get_tick_data('000001', date='2018-10-08', src='tt')
复制代码

3.3 数据预处理

3.3.1 统计股票的交易日量众数

import numpy as np
yaxis = list()for i in listdir: stock = pd.read_csv("financial_data\\price_logreturn\\"+i) yaxis.append(len(stock['logreturn']))counts = np.bincount(yaxis)
np.argmax(counts)
复制代码

3.3.2 计算股票对数收益

股票对数收益及皮尔逊相关系数的计算公式:



import pandas as pdimport numpy as npimport osimport math
listdir = os.listdir("financial_data\\price")
for l in listdir: stock = pd.read_csv('financial_data\\price\\'+l) stock['index'] = [1]* len(stock['close']) stock['next_close'] = stock.groupby('index')['close'].shift(-1) stock = stock.drop(index=stock.index[-1]) logreturn = list() for i in stock.index: logreturn.append(math.log(stock['next_close'][i]/stock['close'][i])) stock['logreturn'] = logreturn stock.to_csv("financial_data\\price_logreturn\\"+l,index=False)
复制代码

3.3.3 股票间对数收益率相关系数

from math import sqrtdef multipl(a,b):   sumofab=0.0   for i in range(len(a)):       temp=a[i]*b[i]       sumofab+=temp   return sumofab
def corrcoef(x,y): n=len(x) #求和 sum1=sum(x) sum2=sum(y) #求乘积之和 sumofxy=multipl(x,y) #求平方和 sumofx2 = sum([pow(i,2) for i in x]) sumofy2 = sum([pow(j,2) for j in y]) num=sumofxy-(float(sum1)*float(sum2)/n) #计算皮尔逊相关系数 den=sqrt((sumofx2-float(sum1**2)/n)*(sumofy2-float(sum2**2)/n)) return num/den
复制代码


由于原始数据达百万条,为节省计算量仅选取前 300 个股票进行关联性分析


listdir = os.listdir("financial_data\\300stock_logreturn")s1 = list()s2 = list()corr = list()for i in listdir:   for j in listdir:       stocka = pd.read_csv("financial_data\\300stock_logreturn\\"+i)       stockb = pd.read_csv("financial_data\\300stock_logreturn\\"+j)       if len(stocka['logreturn']) == 242 and len(stockb['logreturn']) == 242:           s1.append(str(i)[:10])           s2.append(str(j)[:10])           corr.append(corrcoef(stocka['logreturn'],stockb['logreturn']))           print(str(i)[:10],str(j)[:10],corrcoef(stocka['logreturn'],stockb['logreturn']))corrdf = pd.DataFrame()corrdf['s1'] = s1corrdf['s2'] = s2corrdf['corr'] = corrcorrdf.to_csv("financial_data\\corr.csv")
复制代码

4 搭建金融知识图谱

安装第三方库


pip install py2neo
复制代码

4.1 基于 python 连接

具体代码可参考 3.1 python 操作 neo4j-连接


from pandas import DataFramefrom py2neo import Graph,Node,Relationship,NodeMatcherimport pandas as pdimport numpy as npimport os# 连接Neo4j数据库graph = Graph('http://localhost:7474/db/data/',username='neo4j',password='neo4j')
复制代码

4.2 读取数据

stock = pd.read_csv('stock_basic.csv',encoding="gbk")holder = pd.read_csv('holders.csv')concept_num = pd.read_csv('concept.csv')concept = pd.read_csv('stock_concept.csv')sh = pd.read_csv('sh.csv')sz = pd.read_csv('sz.csv')corr = pd.read_csv('corr.csv')
复制代码

4.3 填充和去重

stock['行业'] = stock['行业'].fillna('未知')holder = holder.drop_duplicates(subset=None, keep='first', inplace=False)
复制代码

4.4 创建实体

概念、股票、股东、股通


sz = Node('深股通',名字='深股通')graph.create(sz)  
sh = Node('沪股通',名字='沪股通')graph.create(sh)
for i in concept_num.values: a = Node('概念',概念代码=i[1],概念名称=i[2]) print('概念代码:'+str(i[1]),'概念名称:'+str(i[2])) graph.create(a)
for i in stock.values: a = Node('股票',TS代码=i[1],股票名称=i[3],行业=i[4]) print('TS代码:'+str(i[1]),'股票名称:'+str(i[3]),'行业:'+str(i[4])) graph.create(a)
for i in holder.values: a = Node('股东',TS代码=i[0],股东名称=i[1],持股数量=i[2],持股比例=i[3]) print('TS代码:'+str(i[0]),'股东名称:'+str(i[1]),'持股数量:'+str(i[2])) graph.create(a)
复制代码


4.5 创建关系

股票-股东、股票-概念、股票-公告、股票-股通


matcher = NodeMatcher(graph)for i in holder.values:       a = matcher.match("股票",TS代码=i[0]).first()   b = matcher.match("股东",TS代码=i[0])   for j in b:       r = Relationship(j,'参股',a)       graph.create(r)       print('TS',str(i[0]))           for i in concept.values:   a = matcher.match("股票",TS代码=i[3]).first()   b = matcher.match("概念",概念代码=i[1]).first()   if a == None or b == None:       continue   r = Relationship(a,'概念属于',b)   graph.create(r)
noticesdir = os.listdir("notices\\")for n in noticesdir: notice = pd.read_csv("notices\\"+n,encoding="utf_8_sig") notice['content'] = notice['content'].fillna('空白') for i in notice.values: a = matcher.match("股票",TS代码=i[0]).first() b = Node('公告',日期=i[1],标题=i[2],内容=i[3]) graph.create(b) r = Relationship(a,'发布公告',b) graph.create(r) print(str(i[0])) for i in sz.values: a = matcher.match("股票",TS代码=i[0]).first() b = matcher.match("深股通").first() r = Relationship(a,'成分股属于',b) graph.create(r) print('TS代码:'+str(i[1]),'--深股通')
for i in sh.values: a = matcher.match("股票",TS代码=i[0]).first() b = matcher.match("沪股通").first() r = Relationship(a,'成分股属于',b) graph.create(r) print('TS代码:'+str(i[1]),'--沪股通')
# 构建股票间关联corr = pd.read_csv("corr.csv")for i in corr.values: a = matcher.match("股票",TS代码=i[1][:-1]).first() b = matcher.match("股票",TS代码=i[2][:-1]).first() r = Relationship(a,str(i[3]),b) graph.create(r) print(i)
复制代码


5 数据可视化查询

基于 Crypher 语言,以平安银行为例进行可视化查询。

5.1 查看所有关联实体

match p=(m)-[]->(n) where m.股票名称="平安银行" or n.股票名称="平安银行" return p;
复制代码


5.2 限制显示数量

计算股票间对数收益率的相关系数后,查看与平安银行股票相关联的实体


match p=(m)-[]->(n) where m.股票名称="平安银行" or n.股票名称="平安银行" return p limit 300;
复制代码


5.3 指定股票间对数收益率相关系数

match p=(m)-[]->(n) where m.股票名称="平安银行" and n.股票名称="万科A" return p;
复制代码


6 neo4j 图算法

6.1.中心度算法(Centralities)

6.2 社区检测算法(Community detection)

6.3 路径搜索算法(Path finding)

6.4 相似性算法(Similarity)

6.5 链接预测(Link Prediction)

6.6 预处理算法(Preprocessing)

6.7 算法库安装及导入方法

以 Windows OS 为例,neo4j 的算法库并非在安装包中提供,而需要下载算法包:


(1)下载graph-algorithms-algo-3.5.4.0.jar


(2)将graph-algorithms-algo-3.5.4.0.jar移动至 neo4j 数据库根目录下的plugin


(3)修改 neo4j 数据库目录的confneo4j.conf,添加以下配置


dbms.security.procedures.unrestricted=algo.*
复制代码


(4)使用以下命令查看所有算法列表


CALL algo.list()
复制代码

6.8 算法实践——链路预测

6.8.1 Aaamic Adar algorithm

主要基于判断相邻的两个节点之间的亲密程度作为评判标准,2003 年由 Lada Adamic 和 Eytan Adar 在 Friends and neighbors on the Web 提出,其中节点亲密度的计算公式如下:



其中N(u)表示与节点 u 相邻的节点集合,若A(x,y)表示节点 x 和节点 y 不相邻,而该值若越大则紧密度为高。


AAA 算法 cypher 代码参考:


MERGE (zhen:Person {name: "Zhen"})MERGE (praveena:Person {name: "Praveena"})MERGE (michael:Person {name: "Michael"})MERGE (arya:Person {name: "Arya"})MERGE (karin:Person {name: "Karin"})
MERGE (zhen)-[:FRIENDS]-(arya)MERGE (zhen)-[:FRIENDS]-(praveena)MERGE (praveena)-[:WORKS_WITH]-(karin)MERGE (praveena)-[:FRIENDS]-(michael)MERGE (michael)-[:WORKS_WITH]-(karin)MERGE (arya)-[:FRIENDS]-(karin)
// 计算 Michael 和 Karin 之间的亲密度MATCH (p1:Person {name: 'Michael'})MATCH (p2:Person {name: 'Karin'})RETURN algo.linkprediction.adamicAdar(p1, p2) AS score// score: 0.910349
// 基于好友关系计算 Michael 和 Karin 之间的亲密度MATCH (p1:Person {name: 'Michael'})MATCH (p2:Person {name: 'Karin'})RETURN algo.linkprediction.adamicAdar(p1, p2, {relationshipQuery: "FRIENDS"}) AS score// score: 0.0
复制代码

6.8.2 Common Neighbors

基于节点之间共同近邻数量计算,计算公式如下:



其中 N(x)表示与节点 x 相邻的节点集合,共同近邻表示两个集合的交集,若 CN(x,y)值越高,表示节点 x 和节点 y 的亲密度越高。


Common Neighbors 算法 cypher 代码参考:


MATCH (p1:Person {name: 'Michael'})MATCH (p2:Person {name: 'Karin'})RETURN algo.linkprediction.commonNeighbors(p1, p2) AS score
复制代码



6.8.3 Resource Allocation

资源分配算法,计算公式如下:



其中N(u)是与节点u相邻的节点集合,RA(x,y)越高表明节点 x 和节点 y 的亲密度越大。


Resource Allocation 算法 cypher 代码参考:


MATCH (p1:Person {name: 'Michael'})MATCH (p2:Person {name: 'Karin'})RETURN algo.linkprediction.resourceAllocation(p1, p2) AS score
复制代码

6.8.4 Total Neighbors

指的是相邻节点之间的邻居总数,计算公式如下:



其中N(u)是与节点u相邻的节点集合。


Total Neighbors 算法 cypher 代码参考:


MATCH (p1:Person {name: 'Michael'})MATCH (p2:Person {name: 'Karin'})RETURN algo.linkprediction.totalNeighbors(p1, p2) AS score
复制代码


官网文档>链路算法>介绍:https://neo4j.com/docs/graph-algorithms/3.5/labs-algorithms/linkprediction/

7.Cypher Cheetsheet 基础语法

7.1 创建节点

类型为Person(属性:姓名、年龄及性别)


create (:Person{name:"Tom",age:18,sex:"male"})create (:Person{name:"Jimmy",age:20,sex:"male"})
复制代码

7.2 创建关系

寻找 2 个 Person 类型节点分别姓名为 Tom 和 Jimmy,创建两节点之间的关系:类型为 Friend,关系值为 best


match(p1:Person),(p2:Person)where p1.name="Tom" and p2.name = "Jimmy"create(p1) -[:Friend{relation:"best"}] ->(p2);
复制代码

7.3 创建索引

create index on :Person(name)// 创建唯一索引(属性值唯一)create constraint on (n:Person) assert n.name is unique
复制代码

7.4 删除节点

// 普通删除match(p:Person_{name:"Jiimmy"}) delete pmatch (a)-[r:knows]->(b) delete r,b// 级联删除(即删除某个节点时会同时删除该节点的关系)match (n{name: "Mary"}) detach delete n// 删除所有节点match (m) delete m
复制代码

7.5 删除关系

// 普通删除match(p1:Person)-[r:Friend]-(p2:Person)where p1.name="Jimmy" and p2.name="Tom"delete r// 删除所有关系match p=()-[]-() delete p
复制代码

7.6 merge 关键字

存在直接返回;不存在则新建并返回(通常实际用途于在对节点添加属性时避免报错)


// 创建/获取对象merge (p:Person { name: "Jim1" }) return p;
// 创建/获取对象 + 设置属性值 + 返回属性值merge (p:Person { name: "Koko" })on create set p.time = timestamp()return p.name, p.time
// 创建关系match (a:Person {name: "Jim"}),(b:Person {name: "Tom"})merge (a)-[r:friends]->(b)
复制代码

7.7 更新节点

7.7.1 更新属性值

match (n {name:'Jim'})set n.name='Tom'set n.age=20return n
复制代码

7.7.2 新增属性和属性值

match (n {name:'Mary'}) set n += {age:20} return n
复制代码

7.7.3 删除属性值

match(n{name:'Tom'}) remove n.age return n
复制代码

7.7.4 更新节点类型(允许有多个标签)

①match (n{name:'Jim'}) set n:Person return n②match (n{name:'Jim'}) set n:Person:Student return n
复制代码

7.8 匹配

7.8.1 限制节点类型和属性匹配

match (n:Person{name:"Jim"}) return nmatch (n) where n.name = "Jim" return nmatch (n:Person)-[:Realation]->(m:Person) where n.name = 'Mary'
复制代码

7.8.2 可选匹配(对于缺失部分使用 Null 代替)

optional match (n)-[r]->(m) return m
复制代码

7.8.3 字符串开头匹配

match (n) where n.name starts with 'J' return n
复制代码

7.8.4 字符串结尾匹配

match (n) where n.name ends with 'J' return n
复制代码

7.8.5 字符串包含匹配

match (n) where n.name contains with 'g' return n
复制代码

7.8.6 字符串排除匹配

match (n) where not n.name starts with 'J' return n
复制代码

7.8.7 正则匹配 =~(模糊匹配)

match (n) where n.name =~ '.*J.*' return n (等价) like '%J%'
复制代码

7.8.8 正则匹配 =~(不区分大小写)

match (n) where n.name =~ '(?i)b.*' return n (等价) like 'B/b%'
复制代码

7.8.9 属性值包含(IN)

match (n { name: 'Jim' }),(m) where m.name in ['Tom', 'Koo'] and (n)<--(m) return m
复制代码

7.8.10 "或"匹配(|)

match p=(n)-[:knows|:likes]->(m) return p
复制代码

7.8.11 任意节点和指定范围深度关系

match p=(n)-[*1..3]->(m) return p
复制代码

7.8.12 任意节点和指任意深度关系

match p=(n)-[*]->(m) return p
复制代码

7.8.13 去重返回

match (n) where n.ptype='book' return distinct n
复制代码

7.8.14 排序返回(desc 降序;asc 升序)

match (n) where n.ptype='book' return n order by n.price desc
复制代码

7.8.15 重命名返回

match (n) where n.ptype='book' return n.pname as name
复制代码

7.8.16 多重条件限制(with),即返回认识 10 人以上的张 %

match (a)-[:knows]-(b)where a.name =~ '张.*'with a, count(b) as friendswhere friends > 10return a
复制代码

7.8.17 并集去重(union)

match (a)-[:knows]->(b) return b.nameunionmatch (a)-[:likes]->(b) eturn b.name
复制代码

7.8.18 并集不去重(union all)

match (a)-[:knows]->(b) return b.nameunion allmatch (a)-[:likes]->(b) eturn b.name
复制代码

7.8.19 查看节点属性/ID

match (p) where p.name = 'Jim' return keys(p)/properties(p)/id(p)
复制代码

7.8.20 匹配分页返回

match (n) where n.name='John' return n skip 10 limit 10
复制代码

7.9 读取文件

7.9.1 读取网络资源 csv 文件

load csv with header from 'url:[www.download.com/abc.csv](http://www.download.com/abc.csv)' as line
create (:Track{trackId:line.id,name:line.name,length:line.length})
复制代码

7.9.2 分批读取网络资源

例如 csv 文件(default=1000)


using periodic commit (800)
load csv with header from 'url:[www.download.com/abc.csv](http://www.download.com/abc.csv)' as line
create (:Track{trackId:line.id,name:line.name,length:line.length})
复制代码

7.9.3 读取本地文件

load csv with headers from 'file:///00000.csv' as linecreate (:Data{date:line['date'],open:line['open']})(fieldterminator ';') //自定义分隔符
复制代码

7.9.4 注意事项

※ 本地csv文件必须是utf-8格式※ 需要导入neo4j数据库目录的import目录下※ 本地csv包含column必须添加with headers
复制代码

7.10 foreach 关键字



  • 个人小结


1.节点属性使用()2.关系属性使用[]3.where 中使用"="4.{}中使用":"5.关系建立使用(m)-[:r]->(n)6.正则使用"=~"7.节点或者关系(/[变量名:类型{属性名:属性值}]/)8.匹配关系时需要基于 p=(m)-[r]->(n)返回 p,而不是返回 r(显示空)

码源链接见文末跳转

文末链接跳转


更多优质内容请关注公号 &知乎:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。




发布于: 刚刚阅读数: 3
用户头像

本博客将不定期更新关于NLP等领域相关知识 2022-01-06 加入

本博客将不定期更新关于机器学习、强化学习、数据挖掘以及NLP等领域相关知识,以及分享自己学习到的知识技能,感谢大家关注!

评论

发布
暂无评论
手把手教学小型金融知识图谱构建:量化分析、图数据库neo4j、图算法、关系预测、命名实体识别、Cypher Cheetsheet详细教学等_人工智能_汀丶人工智能_InfoQ写作社区