写点什么

h2database BTree 设计实现与查询优化思考 | 京东云技术团队

  • 2023-06-26
    北京
  • 本文字数:4676 字

    阅读完需:约 15 分钟

h2database BTree 设计实现与查询优化思考 | 京东云技术团队

h2database 是使用 Java 编写的开源数据库,兼容 ANSI-SQL89。既实现了常规基于 BTree 的存储引擎,又支持日志结构存储引擎。功能非常丰富(死锁检测机制、事务特性、MVCC、运维工具等),数据库学习非常好的案例。


本文理论结合实践,通过 BTree 索引的设计和实现,更好的理解数据库索引相关的知识点以及优化原理。

BTree 实现类

h2database 默认使用的 MVStore 存储引擎,如果要使用 基于 BTree 的存储引擎,需要特别指定(如下示例代码 jdbcUrl)。


以下是常规存储引擎(BTree 结构) 相关的关键类。


  • org.h2.table.RegularTable

  • org.h2.index.PageBtreeIndex (SQL Index 本体实现)

  • org.h2.store.PageStore (存储层,对接逻辑层和文件系统)


BTree 的数据结构可以从网上查到详细的描述和讲解,不做过多赘述。


需要特别说明的是:PageStore。我们数据查询和优化关键的缓存、磁盘读取、undo log 都是由 PageStore 完成。可以看到详细的文档和完整的实现。

BTree add index entry 调用链

提供索引数据新增的调用链。同样的,索引的删除和查询都会涉及到,方便 debug 参考。


  1. org.h2.command.dml.Insert#insertRows (Insert SQL 触发数据和索引新增)

  2. org.h2.mvstore.db.RegularTable#addRow (处理完的数据 Row, 执行新增)

  3. org.h2.index.PageBtreeIndex#add (逻辑层增加索引数据)

  4. org.h2.index.PageDataIndex#addTry (存储层增加索引数据)

  5. org.h2.index.PageDataLeaf#addRowTry (存储层新增实现)


// 示例代码// CREATE TABLE city (id INT(10) NOT NULL AUTO_INCREMENT, code VARCHAR(40) NOT NULL, name VARCHAR(40) NOT NULL);public static void main(String[] args) throws SQLException {    // 注意:MV_STORE=false,MVStore is used as default storage    Connection conn = DriverManager.getConnection("jdbc:h2:~/test;MV_STORE=false", "sa", "");    Statement statement = conn.createStatement();    // CREATE INDEX IDX_NAME ON city(code); 添加数据触发 BTree 索引新增    // -- SQL 实例化为:IDX_NAME:16:org.h2.index.PageBtreeIndex    statement.executeUpdate("INSERT INTO city(code,name) values('cch','长春')");    statement.close();    conn.close();}
复制代码

Code Insight

结合上述的示例代码,从索引新增的流程实现来了解 BTree 索引的特性以及使用的注意事项。从底层实现分析索引的运行,对 SQL 索引使用和优化有进一步认识。

表添加数据

 public void addRow(Session session, Row row) {    // MVCC 控制机制,记录和比对当前事务的 id    lastModificationId = database.getNextModificationDataId();    if (database.isMultiVersion()) {        row.setSessionId(session.getId());    }    int i = 0;    try {        // 根据设计规范,indexes 肯定会有一个聚集索引(h2 称之为scan index)。①        for (int size = indexes.size(); i < size; i++) {            Index index = indexes.get(i);            index.add(session, row);            checkRowCount(session, index, 1);        }        // 记录当前 table 的数据行数,事务回滚后会相应递减。        rowCount++;    } catch (Throwable e) {        try {            while (--i >= 0) {                Index index = indexes.get(i);                // 对应的,如果发生任何异常,会移除对应的索引数据。                index.remove(session, row);            }        }        throw de;    }}
复制代码


① 同 Mysql InnoDB 数据存储一样, RegularTable 必有,且只有一个聚集索引。以主键(或者隐含自增 id)为 key, 存储完整的数据。

聚集索引添加数据

  • 索引中的 key 是查询要搜索的内容,而其值可以是以下两种情况之一:它可以是实际的行(文档,顶点),也可以是对存储在别处的行的引用。在后一种情况下,行被存储的地方被称为 堆文件(heap file) ,并且存储的数据没有特定的顺序(根据索引相关的)。

  • 从索引到堆文件的额外跳跃对读取来说性能损失太大,因此可能希望将被索引的行直接存储在索引中。这被称为聚集索引(clustered index)。

  • 基于主键扫描即可唯一确定、并且获取到数据,聚集索引性能比非主键索引少一次扫描


public void add(Session session, Row row) {    // 索引key 生成 ②    if (mainIndexColumn != -1) {        // 如果主键非 long, 使用 org.h2.value.Value#convertTo 尝试把主键转为 long        row.setKey(row.getValue(mainIndexColumn).getLong());    } else {        if (row.getKey() == 0) {            row.setKey((int) ++lastKey);            retry = true;        }    }
// 添加行数据到聚集索引 ③ while (true) { try { addTry(session, row); break; } catch (DbException e) { if (!retry) { throw getNewDuplicateKeyException(); } } }}
复制代码


② 对于有主键的情况,会获取当前 row 主键的值,转为 long value。对于没有指定主键的情况,从当前聚集索引属性 lastKey 自增得到唯一 key。


只有指定主键的情况,才会校验数据重复(也就是索引 key 重复,自增 lastKey 是不会有重复值的问题)。


③ 聚集索引 PageDataIndex 按照 BTree 结构查找对应的 key 位置,按照主键/key 的顺序,将 Row 存储到 page 中。非聚集索引 PageBtreeIndex 也是这样的处理流程。


这其中涉及到三个问题:


  1. 如何查找 key 的位置,也就是 BTree 位置的计算?

  2. 如何计算 Row (实际数据)存储 Page 中的 offsets?

  3. Row 是怎样写入到磁盘中的,何时写入的?

索引数据存取实现

  • B 树将数据库分解成固定大小的 块(block) 或 分页(page) ,传统上大小为 4KB(有时会更大),并且一次只能读取或写入一个页面。

  • 每个页面都可以使用地址或位置来标识,这允许一个页面引用另一个页面 —— 类似于指针,但在硬盘而不是在内存中。(对应 h2 database PageBtreeLeaf 和 PageBtreeNode)

  • 不同于 PageDataIndex ,PageBtreeIndex 按照 column.value 顺序来存储。添加的过程就是比对查找 column.value,确定在块(block)中 offsets 的下标 x。剩下就是计算数据的 offset 并存入下标 x 中。


/** * Find an entry. 二分查找 compare 所在的位置。这个位置存储 compare 的offset。 * org.h2.index.PageBtree#find(org.h2.result.SearchRow, boolean, boolean, boolean) * @param compare 查找的row, 对应上述示例 compare.value = 'cch' * @return the index of the found row */int find(SearchRow compare, boolean bigger, boolean add, boolean compareKeys) {    // 目前 page 持有的数据量 ④    int l = 0, r = entryCount;    int comp = 1;    while (l < r) {        int i = (l + r) >>> 1;        // 根据 offsets[i],读取对应的 row 数据 ⑤        SearchRow row = getRow(i);        // 比大小 ⑥        comp = index.compareRows(row, compare);        if (comp == 0) {            // 唯一索引校验 ⑦            if (add && index.indexType.isUnique()) {                if (!index.containsNullAndAllowMultipleNull(compare)) {                    throw index.getDuplicateKeyException(compare.toString());                }            }        }        if (comp > 0 || (!bigger && comp == 0)) {            r = i;        } else {            l = i + 1;        }    }    return l;}
复制代码


④ 每个块(page)entryCount ,两个方法初始化。根据块分配和实例创建初始化,或者 PageStore 读取块文件,从 Page Data 解析得到。


⑤ 反序列化过程,从 page 文件字节码(4k 的字节数组),根据协议读取数据并实例化为 row 对象。参考: org.h2.index.PageBtreeIndex#readRow(org.h2.store.Data, int, boolean, boolean) 。


⑥ 全类型支持大小比对,具体的规则参考:org.h2.index.BaseIndex#compareRows


⑦ 如果数据中存在重复的键值,则不能创建唯一索引、UNIQUE 约束或 PRIMARY KEY 约束。h2database 兼容多种数据库模式,MySQL NULL 非唯一,MSSQLServer NULL 唯一,仅允许出现一次。


private int addRow(SearchRow row, boolean tryOnly) {  // 计算数据所占字节的长度  int rowLength = index.getRowSize(data, row, onlyPosition);  // 块大小,默认 4k  int pageSize = index.getPageStore().getPageSize();  // 块文件可用的 offset 获取  int last = entryCount == 0 ? pageSize : offsets[entryCount - 1];  if (last - rowLength < start + OFFSET_LENGTH) {    // 校验和尝试分配计算,这其中就涉及到分割页面生长 B 树的过程 ⑧  }  // undo log 让B树更可靠 ⑨  index.getPageStore().logUndo(this, data);  if (!optimizeUpdate) {    readAllRows();  }
int x = find(row, false, true, true); // 新索引数据的offset 插入到 offsets 数组中。使用 System.arraycopy(x + 1) 来挪动数据。 offsets = insert(offsets, entryCount, x, offset); // 重新计算 offsets,写磁盘就按照 offsets 来写入数据。 add(offsets, x + 1, entryCount + 1, -rowLength); // 追加实际数据 row rows = insert(rows, entryCount, x, row); entryCount++; // 标识 page.setChanged(true); index.getPageStore().update(this); return -1;}
复制代码


⑧如果你想添加一个新的键,你需要找到其范围能包含新键的页面,并将其添加到该页面。如果页面中没有足够的可用空间容纳新键,则将其分成两个半满页面,并更新父页面以反映新的键范围分区


⑨为了使数据库能处理异常崩溃的场景,B 树实现通常会带有一个额外的硬盘数据结构:预写式日志(WAL,即 write-ahead log,也称为 重做日志,即 redo log)。这是一个仅追加的文件,每个 B 树的修改在其能被应用到树本身的页面之前都必须先写入到该文件。当数据库在崩溃后恢复时,这个日志将被用来使 B 树恢复到一致的状态。

实践总结

  • 查询优化实质上就是访问数据量的优化,磁盘 IO 的优化。

  • 如果数据全部缓存到内存中,实际上就是计算量的优化,CPU 使用的优化。

  • 索引是有序的,实际上就是指块文件内的 offsets 是以数组形式体现的。 特殊的是,在 h2database 中,offsets 数组元素也是有序的(例如:[4090, 4084, 4078, 4072, 4066, 4060, 4054, 4048, 4042]),应该是方便磁盘顺序读,防止磁盘碎片化

  • 理论上,聚集索引扫描 IO 比 BTree 索引要多,因为同样的块文件内,BTree 索引 存储的数据量更大,所占的块文件更少。如果一个 table 列足够少,聚集索引扫描效率更高。

  • 建表需要谨慎,每个列的字段长度尽可能的短,来节省页面空间

  • 合理使用覆盖索引查询,避免回表查询。  如述示例,select id from city where code = 'cch' ,扫描一次 BTree 索引即可得到结果。如果 select name from city where code = 'cch', 需要扫描一次 BTree 索引得到索引 key (主键),再遍历扫描聚集索引,根据 key 得到结果。

  • 合理的使用缓存,让磁盘 IO 的影响降到最低。  比如合理配置缓存大小,冷热数据区分查询等。

其他知识点

  • 分支因子为 500 的 4KB 页面的四层树可以存储多达 256TB 的数据)。(在 B 树的一个页面中对子页面的引用的数量称为 分支因子(branching factor)

参考

ddia/ch3.md B树


作者:京东物流 杨攀

内容来源:京东云开发者社区

发布于: 刚刚阅读数: 3
用户头像

拥抱技术,与开发者携手创造未来! 2018-11-20 加入

我们将持续为人工智能、大数据、云计算、物联网等相关领域的开发者,提供技术干货、行业技术内容、技术落地实践等文章内容。京东云开发者社区官方网站【https://developer.jdcloud.com/】,欢迎大家来玩

评论

发布
暂无评论
h2database BTree 设计实现与查询优化思考 | 京东云技术团队_数据库_京东科技开发者_InfoQ写作社区